Advertisement

CardioVascular and Interventional Radiology

, Volume 41, Issue 1, pp 170–176 | Cite as

Electromagnetically Navigated In Situ Fenestration of Aortic Stent Grafts: Pilot Animal Study of a Novel Fenestrated EVAR Approach

  • Tobias Penzkofer
  • Hong-Sik Na
  • Peter Isfort
  • Christoph Wilkmann
  • Sabine Osterhues
  • Andreas Besting
  • Christoph Hänisch
  • Stefan Bisplinghoff
  • Johannes Jansing
  • Sylvie von Werder
  • Jorge Gooding
  • Mathias de la Fuente
  • Andreas H. Mahnken
  • Catherine Disselhorst-Klug
  • Thomas Schmitz-Rode
  • Christiane Kuhl
  • Philipp Bruners
Technical Note

Abstract

Purpose

Assess electromagnetically guided in situ fenestration of juxtarenal aortic stent grafts in an in vivo model.

Methods

Using a newly developed electromagnetic guidance system together with a modified, electromagnetically guidable catheter with steerable tip, an electromagnetically trackable guidewire and a custom in situ fenestrateable stent graft, a series of seven animal experiments was performed. In a swine model, stent grafts were placed juxtarenally, covering the renal arteries. Subsequently, the perfusion of the renal arteries was restored using electromagnetically guided in situ fenestration of the graft at the renal ostia followed by covered stent placement. Intervention times and technical success were assessed.

Results

The individual components were successfully combined for the animal experiments. Thirteen of fourteen fenestration experiments in seven animals were successful in restoring perfusion through in situ fenestration. Fenestration (catheter introduction—guidewire placement in renal artery across graft) could be achieved in on average 10.5 ± 9.2 min, and subsequent covered stent placement (guidewire placement—covered stent placement) took on average 32.7 ± 17.5 min. No significant differences between left and right side reperfusion times could be detected. Reperfusion in <30 min was achieved in 3/14 attempts.

Conclusion

Electromagnetically navigated in situ aortic fenestration for juxtarenal aortic stent grafts was feasible in a healthy animal model. Identified remaining challenges were: shortening the procedure to avoid long warm ischemia times, using an aortic aneurysm animal model, and improving the stability of the stent graft material.

Keywords

Electromagnetic navigation Vascular minimally invasive interventions Fenestrated endovascular aortic repair 

Notes

Acknowledgements

Dr. Penzkofer is participant in the BIH Charité Clinician Scientist Program funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health.

Compliance with Ethical Standards

Conflict of interest

The authors declare no relevant conflict of interest outside of their respective employments.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

References

  1. 1.
    Abbas A, Kadakia S, Ambur V, Muro K, Kaiser L. Intraoperative electromagnetic navigational bronchoscopic localization of small, deep, or subsolid pulmonary nodules. J Thorac Cardiovasc Surg. 2017;153(6):1581–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Abi-Jaoudeh N, Glossop N, Dake M, et al. Electromagnetic navigation for thoracic aortic stent-graft deployment: a pilot study in swine. J Vasc Interv Radiol. 2010;21(6):888–95.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bosiers MJ, Donas KP, Mangialardi N, et al. European multicenter registry for the performance of the chimney/snorkel technique in the treatment of aortic arch pathologic conditions. Ann Thorac Surg. 2016;101(6):2224–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Farber MA, Vallabhaneni R, Marston WA. “Off-the-shelf” devices for complex aortic aneurysm repair. J Vasc Surg. 2014;60(3):579–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Gallitto E, Gargiulo M, Freyrie A, et al. Endovascular Repair of Thoracoabdominal Aortic Aneurysm in High-Surgical Risk Patients: Fenestrated and Branched Endografts. Ann Vasc Surg. 2017;40:170–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Glorion M, Coscas R, McWilliams RG, Javerliat I, Goeau-Brissonniere O, Coggia M. A comprehensive review of in situ fenestration of aortic endografts. Eur J Vasc Endovasc Surg. 2016;52(6):787–800.CrossRefPubMedGoogle Scholar
  7. 7.
    Graves HL, Jackson BM. The current state of fenestrated and branched devices for abdominal aortic aneurysm repair. Semin Intervent Radiol. 2015;32(3):304–10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kitagawa A, Greenberg RK, Eagleton MJ, Mastracci TM. Zenith p-branch standard fenestrated endovascular graft for juxtarenal abdominal aortic aneurysms. J Vasc Surg. 2013;58(2):291–300.CrossRefPubMedGoogle Scholar
  9. 9.
    McWilliams RG, Murphy M, Hartley D, Lawrence-Brown MM, Harris PL. In situ stent-graft fenestration to preserve the left subclavian artery. J Endovasc Ther. 2004;11(2):170–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Mir MC, Pavan N, Parekh DJ. Current paradigm for ischemia in kidney surgery. J Urol. 2016;195(6):1655–63.CrossRefPubMedGoogle Scholar
  11. 11.
    Novick AC. Renal hypothermia: in vivo and ex vivo. Urol Clin North Am. 1983;10(4):637–44.PubMedGoogle Scholar
  12. 12.
    Oderich GS, Greenberg RK, Farber M, et al. Results of the United States multicenter prospective study evaluating the Zenith fenestrated endovascular graft for treatment of juxtarenal abdominal aortic aneurysms. J Vasc Surg. 2014;60(6):1420–8.e1-5.CrossRefPubMedGoogle Scholar
  13. 13.
    Penzkofer T, Bruners P, Isfort P, et al. Free-hand CT-based electromagnetically guided interventions: accuracy, efficiency and dose usage. Minim Invasive Ther Allied Technol. 2011;20(4):226–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Penzkofer, T, Isfort P, Na HS, et al. Technical concepts for vascular electromagnetic navigated interventions: aortic in situ fenestration and transjugular intrahepatic porto-systemic shunts. Biomed Tech (Berl). 2014;59(2):153–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning: current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62(2):307–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Tse LW, Lindsay TF, Roche-Nagle G, Oreopoulos GD, Ouzounian M, Tan KT. Radiofrequency in situ fenestration for aortic arch vessels during thoracic endovascular repair. J Endovasc Ther. 2015;22(1):116–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2017

Authors and Affiliations

  • Tobias Penzkofer
    • 1
    • 2
    • 3
  • Hong-Sik Na
    • 1
  • Peter Isfort
    • 1
  • Christoph Wilkmann
    • 1
  • Sabine Osterhues
    • 4
  • Andreas Besting
    • 5
  • Christoph Hänisch
    • 6
  • Stefan Bisplinghoff
    • 6
  • Johannes Jansing
    • 6
  • Sylvie von Werder
    • 7
  • Jorge Gooding
    • 7
  • Mathias de la Fuente
    • 6
  • Andreas H. Mahnken
    • 1
    • 8
  • Catherine Disselhorst-Klug
    • 7
  • Thomas Schmitz-Rode
    • 7
  • Christiane Kuhl
    • 1
  • Philipp Bruners
    • 1
  1. 1.Department of Diagnostic and Interventional RadiologyRWTH Aachen University HospitalAachenGermany
  2. 2.Department of RadiologyCharité – Universitätsmedizin BerlinBerlinGermany
  3. 3.Berlin Institute of Health (BIH)BerlinGermany
  4. 4.Vygon GmbHAachenGermany
  5. 5.SurgiTAIX AGHerzogenrathGermany
  6. 6.Medical EngineeringRWTH Aachen UniversityAachenGermany
  7. 7.Applied Medical EngineeringRWTH Aachen University HospitalAachenGermany
  8. 8.Department of Diagnostic and Interventional RadiologyPhilips University HospitalMarburgGermany

Personalised recommendations