CardioVascular and Interventional Radiology

, Volume 40, Issue 8, pp 1147–1154 | Cite as

Treatment Evaluation of Flow-Limiting Stenoses of the Superficial Femoral and Popliteal Artery by Parametric Color-Coding Analysis of Digital Subtraction Angiography Series

  • Michael Kostrzewa
  • Kerim Kara
  • Lothar Pilz
  • Hannelore Mueller-Muertz
  • Nils Rathmann
  • Stefan O. Schoenberg
  • Steffen J. Diehl
Clinical Investigation



To evaluate the hemodynamic effect of percutaneous transluminal intervention (PTI) on stenosis of the superficial femoral (SFA) and popliteal arteries (PA) using time–density curves (TDCs) derived from digital subtraction angiography (DSA) series in correlation with ultrasound peak systolic velocity ratio (PSVR) and ankle brachial index (ABI).

Materials and Methods

DSA series of SFA or PA of patients with symptomatic peripheral arterial occlusive disease was obtained with a flat-panel angiography system with intention-to-treat. In DSA series acquired before and after PTI, TDCs were analyzed proximal and distal of each stenosis using parametric color coding (PCC). For correlation, ABI and PSVR measurements pre- and post-PTI were recorded for all patients.


In total, 25 stenoses of the SFA or PA were treated by PTI in 22 patients (17 male, 5 female, mean age 68 years). After treatment, peak-to-peak (PTP) times between TDCs proximal and distal to the treated vessel segment decreased statistically significantly (p = 0.01) on average from PTP = 1.9 ± 1.7 s to mean PTP = 1 ± 1 s. ABI and PSVR also changed statistically significantly after treatment (pretreatment ABI = 0.7 ± 0.2, PSVR = 4.2 ± 1.9; post-ABI = 0.9 ± 0.2, PSVR = 1.3 ± 0.4, both p < 0.05). Correlation parameters did not show a strong correlation between change in TDC and clinical parameters ABI and PSVR.


Using PCC for analyzing contrast medium dynamics in DSA series is clinically useful for evaluating stenoses of the SFA and PA and for immediate treatment control after PTA.

Level of Evidence

Case series, IV


Parametric color coding Digital subtraction angiography Peak systolic velocity ratio Ankle brachial index Peripheral arterial occlusive disease 



This work was in part funded by the German Federal Ministry of Research (BMBF) as part of the M2OLIE Mannheim Research Campus initiative (Forschungscampus). The Institute of Clinical Radiology and Nuclear Medicine has research agreements with Siemens Healthcare Sector.

Compliance with Ethical Standards

Conflict of interest

All authors contributed fundamentally to this study and approve its publication. The authors state no conflict of interest for any aspect of the submitted work.

Consent/Ethics Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.


  1. 1.
    Farber A, Eberhardt RT. The current state of critical limb ischemia: a systematic review. JAMA Surg. 2016. doi: 10.1001/jamasurg.2016.2018.PubMedGoogle Scholar
  2. 2.
    Reinecke H, Unrath M, Freisinger E, Bunzemeier H, Meyborg M, Luders F, et al. Peripheral arterial disease and critical limb ischaemia: still poor outcomes and lack of guideline adherence. Eur Heart J. 2015;36(15):932–8. doi: 10.1093/eurheartj/ehv006.CrossRefPubMedGoogle Scholar
  3. 3.
    Hansmann J, Michaely HJ, Morelli JN, Diehl SJ, Meyer M, Schoenberg SO, et al. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station. Am J Roentgenol. 2013;201(6):1368–75. doi: 10.2214/AJR.13.10584.CrossRefGoogle Scholar
  4. 4.
    Shang EK, Nathan DP, Fairman RM, Bavaria JE, Gorman RC, Gorman JH III, et al. Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type B aortic dissections. J Vasc Surg. 2015. doi: 10.1016/j.jvs.2015.02.048.Google Scholar
  5. 5.
    Decrinis M, Doder S, Stark G, Pilger E. A prospective evaluation of sensitivity and specificity of the ankle/brachial index in the follow-up of superficial femoral artery occlusions treated by angioplasty. Clin Investig. 1994;72(8):592–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–75. doi: 10.1016/j.ejvs.2006.09.024.CrossRefPubMedGoogle Scholar
  7. 7.
    Golitz P, Struffert T, Lucking H, Rosch J, Knossalla F, Ganslandt O, et al. Parametric color coding of digital subtraction angiography in the evaluation of carotid cavernous fistulas. Clin Neuroradiol. 2013;23(2):113–20. doi: 10.1007/s00062-012-0184-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Golitz P, Struffert T, Rosch J, Ganslandt O, Knossalla F, Doerfler A. Cerebral aneurysm treatment using flow-diverting stents: in vivo visualization of flow alterations by parametric colour coding to predict aneurysmal occlusion: preliminary results. Eur Radiol. 2015;25(2):428–35. doi: 10.1007/s00330-014-3411-7.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang TC, Wu TH, Lin CJ, Mok GS, Guo WY. Peritherapeutic quantitative flow analysis of arteriovenous malformation on digital subtraction angiography. J Vasc Surg. 2012;56(3):812–5. doi: 10.1016/j.jvs.2012.02.041.CrossRefPubMedGoogle Scholar
  10. 10.
    Lin CJ, Luo CB, Hung SC, Guo WY, Chang FC, Beilner J, et al. Application of color-coded digital subtraction angiography in treatment of indirect carotid-cavernous fistulas: initial experience. J Chin Med Assoc. 2013;76(4):218–24. doi: 10.1016/j.jcma.2012.12.009.CrossRefPubMedGoogle Scholar
  11. 11.
    Strother CM, Bender F, Deuerling-Zheng Y, Royalty K, Pulfer KA, Baumgart J, et al. Parametric color coding of digital subtraction angiography. AJNR Am J Neuroradiol. 2010;31(5):919–24. doi: 10.3174/ajnr.A2020.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin CJ, Yu M, Hung SC, Teng MM, Guo WY, Chang FC, et al. In-room assessment of cerebral blood volume for guidance during intra-arterial thrombolytic therapy. Interv neuroradiol. 2012;18(4):463–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Huang TC, Chang CK, Liao CH, Ho YJ. Quantification of blood flow in internal cerebral artery by optical flow method on digital subtraction angiography in comparison with time-of-flight magnetic resonance angiography. PLOS ONE. 2013;8(1):e54678. doi: 10.1371/journal.pone.0054678.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lou WS, Su HB, Huang KY, He X, Chen L, Chen GP, et al. Evaluation of distal hemodynamic changes of lower extremity after endovascular treatment: correlation between measurements of color-coded quantitative digital subtraction angiography and ankle-brachial index. JVIR. 2016. doi: 10.1016/j.jvir.2016.02.011.PubMedGoogle Scholar
  15. 15.
    Callstrom MR, York JD, Gaba RC, Gemmete JJ, Gervais DA, Millward SF, et al. Research reporting standards for image-guided ablation of bone and soft tissue tumors. JVIR. 2009;20(12):1527–40. doi: 10.1016/j.jvir.2009.08.009.CrossRefPubMedGoogle Scholar
  16. 16.
    Shpilfoygel SD, Close RA, Valentino DJ, Duckwiler GR. X-ray videodensitometric methods for blood flow and {Shpilfoygel, 2000#164}velocity measurement: a critical review of literature. Med Phys. 2000;27(9):2008–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Cole BL, Maddocks JD, Sharpe K. Visual search and the conspicuity of coloured targets for colour vision normal and colour vision deficient observers. Clin Exper Optom. 2004;87(4–5):294–304.CrossRefGoogle Scholar
  18. 18.
    Cole BL. The handicap of abnormal colour vision. Clin Exp Optom. 2004;87(4–5):258–75.CrossRefPubMedGoogle Scholar
  19. 19.
    Reekers JA, Koelemay MJ, Marquering HA, van Bavel ET. Functional imaging of the foot with perfusion angiography in critical limb ischemia. Cardiovasc Intervent Radiol. 2016;39(2):183–9. doi: 10.1007/s00270-015-1253-6.CrossRefPubMedGoogle Scholar
  20. 20.
    Jens S, Marquering HA, Koelemay MJ, Reekers JA. Perfusion angiography of the foot in patients with critical limb ischemia: description of the technique. Cardiovasc Intervent Radiol. 2015;38(1):201–5. doi: 10.1007/s00270-014-1036-5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2017

Authors and Affiliations

  1. 1.Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  2. 2.Fraunhofer Project Group for Automation in Medicine and Biotechnology, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  3. 3.Department of Surgery/Thoracic Oncology, University Medical Center Mannheim, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  4. 4.Department of Internal Medicine I, Cardiology/AngiologyUniversity Medical Center Mannheim, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany

Personalised recommendations