Advertisement

CardioVascular and Interventional Radiology

, Volume 39, Issue 10, pp 1455–1463 | Cite as

Percutaneous Image-Guided Screw Fixation of Bone Lesions in Cancer Patients: Double-Centre Analysis of Outcomes including Local Evolution of the Treated Focus

  • Roberto Luigi Cazzato
  • Guillaume Koch
  • Xavier Buy
  • Nitin Ramamurthy
  • Georgia Tsoumakidou
  • Jean Caudrelier
  • Vittorio Catena
  • Julien Garnon
  • Jean Palussiere
  • Afshin Gangi
Clinical Investigation

Abstract

Aim

To review outcomes and local evolution of treated lesions following percutaneous image-guided screw fixation (PIGSF) of pathological/insufficiency fractures (PF/InF) and impeding fractures (ImF) in cancer patients at two tertiary centres.

Materials and methods

Thirty-two consecutive patients (mean age 67.5 years; range 33–86 years) with a range of tumours and prognoses underwent PIGSF for non/minimally displaced PF/InF and ImF. Screws were placed under CT/fluoroscopy or cone-beam CT guidance, with or without cementoplasty. Clinical outcomes were assessed using a simple 4-point scale (1 = worse; 2 = stable; 3 = improved; 4 = significantly improved). Local evolution was reviewed on most recent follow-up imaging. Technical success, complications, and overall survival were evaluated.

Results

Thirty-six lesions were treated with 74 screws mainly in the pelvis and femoral neck (58.2 %); including 47.2 % PF, 13.9 % InF, and 38.9 % ImF. Cementoplasty was performed in 63.9 % of the cases. Technical success was 91.6 %. Hospital stay was ≤3 days; 87.1 % of lesions were improved at 1-month follow-up; three major complications (early screw-impingement radiculopathy; accelerated coxarthrosis; late coxofemoral septic arthritis) and one minor complication were observed. Unfavourable local evolution at imaging occurred in 3/24 lesions (12.5 %) at mean 8.7-month follow-up, including poor consolidation (one case) and screw loosening (two cases, at least 1 symptomatic). There were no cases of secondary fractures.

Conclusions

PIGSF is feasible for a wide range of oncologic patients, offering good short-term efficacy, acceptable complication rates, and rapid recovery. Unfavourable local evolution at imaging may be relatively frequent, and requires close clinico-radiological surveillance.

Keywords

Bone Fractures Screw fixation 

Notes

Compliance with Ethical Standards

Conflict of interest

Roberto Luigi Cazzato, Guillaume Koch, Xavier Buy, Nitin Ramamurthy, Georgia Tsoumakidou, Jean Caudrelier, Vittorio Catena, Julien Garnon, Jean Palussiere and Afshin Gangi have no conflict of interest to disclose.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, Chodacki A, Wiechno P, Logue J, Seke M, Widmark A, Johannessen DC, Hoskin P, Bottomley D, James ND, Solberg A, Syndikus I, Kliment J, Wedel S, Boehmer S, Dall’Oglio M, Franzen L, Coleman R, Vogel-zang NJ, O’Bryan-Tear CG, Staudacher K, Garcia-Vargas J, Shan M, Bruland OS, Sartor O, Investigators A. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.CrossRefPubMedGoogle Scholar
  2. 2.
    Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s–9s.CrossRefPubMedGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2007. Cancer CA Cancer J Clin. 2007;57:43–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Perrin RG, Laxton AW. Metastatic spine disease: epidemiology, pathophysiology, and evaluation of patients. Neurosurg Clin N Am. 2004;15:365–73.CrossRefPubMedGoogle Scholar
  5. 5.
    Deschamps F, Farouil G, Hakime A, Barah A, Guiu B, Teriitehau C, Auperin A, deBaere T. Cementoplasty of metastases of the proximal femur: is it a safe palliative option? J Vasc Interv Radiol. 2012;23(10):1311–6. doi: 10.1016/j.jvir.2012.06.027.CrossRefPubMedGoogle Scholar
  6. 6.
    Piccioli A, Spinelli MS, Maccauro G. Impending fracture: a difficult diagnosis. Injury. 2014;45(Suppl 6):S138–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Mirels H. Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res. 1989;249:256–64.PubMedGoogle Scholar
  8. 8.
    Manglani HH, Marco RA, Picciolo A, Healey JH. Orthopedic emergencies in cancer patients. Semin Oncol. 2000;27:299–310.PubMedGoogle Scholar
  9. 9.
    Body JJ, Pereira J, Sleeboom H, Maniadakis N, Terpos E, Acklin YP, Finek J, Gunther O, Hechmati G, Mossman T, Costa L, Rogowski W, Nahi H, von Moos R. Health resource utilization associated with skeletal-related events: results from a retrospective European study. Eur J Health Econ. 2015.Google Scholar
  10. 10.
    Müller DA, Capanna R. The surgical treatment of pelvic bone metastases. Adv Orthop. 2015;2015:525363. doi: 10.1155/2015/525363.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Choy WS, Kim KJ, Lee SK, Yang DS, Jeung SW, Choi HG, Park HJ. Surgical treatment of pathological fractures occurring at the proximal femur. Yonsei Med J. 2015;56(2):460–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Arvinius C, Parra JL, Mateo LS, Maroto RG, Borrego AF, Stern LL. Benefits of early intramedullary nailing in femoral metastases. Int Orthop. 2014;38(1):129–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Talbot M, Turcotte RE, Isler M, Normandin D, Iannuzzi D, Downer P. Function and health status in surgically treated bone metastases. Clin Orthop Relat Res. 2005;438:215–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu G, Hasan MY, Wong HK. Minimally invasive iliac screw fixation in treating painful metastatic lumbosacral deformity: a technique description and clinical results. Eur Spine J. 2016.Google Scholar
  15. 15.
    Wedin R. Surgical treatment for pathologic fracture. Acta Orthop Scand Suppl. 2001;72(302):1–29.Google Scholar
  16. 16.
    Deschamps F, Farouil G, Hakime A, Teriitehau C, Barah A, de Baere T. Percutaneous stabilization of impending pathological fracture of the proximal femur. Cardiovasc Intervent Radiol. 2012;35(6):1428–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Deschamps F, de Baere T, Hakime A, Pearson E, Farouil G, Teriitehau C, Tselikas L. Percutaneous osteosynthesis in the pelvis in cancer patients. Eur Radiol. 2015.Google Scholar
  18. 18.
    Garnon J, Koch G, Ramamurthy N, Caudrelier J, Rao P, Tsoumakidou G, Cazzato RL, Gangi A. Percutaneous CT and fluoroscopy-guided screw fixation of pathological fractures in the shoulder girdle: technical report of 3 cases. Cardiovasc Intervent Radiol. 2016.Google Scholar
  19. 19.
    Hartung MP, Tutton SM, Hohenwalter EJ, King DM, Neilson JC. Safety and efficacy of minimally invasive acetabular stabilization for periacetabular metastatic disease with thermal ablation and augmented screw fixation. J Vasc Interv Radiol. 2016.Google Scholar
  20. 20.
    Trumm CG, Rubenbauer B, Piltz S, Reiser MF, Hoffmann RT. Screw placement and osteoplasty under computed tomographic-fluoroscopic guidance in a case of advanced metastatic destruction of the iliosacral joint. Cardiovasc Intervent Radiol. 2011;34(Suppl 2):S288–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol. 2003;14:S199–202.CrossRefPubMedGoogle Scholar
  22. 22.
    Selvan VT, Oakley MJ, Rangan A, Al-Lami MK. Optimum configuration of cannulated hip screws for the fixation of intracapsular hip fractures: a biomechanical study. Injury. 2004;35(2):136–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Ye Y, Hao J, Mauffrey C, Hammerberg EM, Stahel PF, Hak DJ. Optimizing stability in femoral neck fracture fixation. Orthopedics. 2015;38(10):625–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Cazzato RL, Palussière J, Buy X, Denaro V, Santini D, Tonini G, Grasso RF, Zobel BB, Poretti D, Pedicini V, Balzarini L, Lanza E. Percutaneous long bone cementoplasty for palliation of malignant lesions of the limbs: a systematic review. Cardiovasc Intervent Radiol. 2015;38(6):1563–72. doi: 10.1007/s00270-015-1082-7 Epub 2015 Mar 24.CrossRefPubMedGoogle Scholar
  25. 25.
    Palumbo BT, Nalley C, Gaskins RB 3rd, Gutierrez S, Alexander GE III, Anijar L, Nayak A, Cheong D, Santoni BG. Biomechanical analysis of impending femoral neck fractures: the role of percutaneous cement augmentation for osteolytic lesions. Clin Biomech (Bristol, Avon). 2014;29(3):289–95.CrossRefGoogle Scholar
  26. 26.
    Rüger M, Sellei RM, Stoffel M, von Rüden C. The effect of polymethyl methacrylate augmentation on the primary stability of cannulated bone screws in an anterolateral plate in osteoporotic vertebrae: a human cadaver study. Glob Spine J. 2016;6(1):46–52.Google Scholar
  27. 27.
    He D, Wu L, Sheng X, Xiao Q, Zhu Y, Yu W, Liu F, Zhu K. Internal fixation with percutaneous kyphoplasty compared with simple percutaneous kyphoplasty for thoracolumbar burst fractures in elderly patients: a prospective randomized controlled trial. Eur Spine J. 2013;22(10):2256–63.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kim J-B, Park S-W, Lee Y-S, Nam T-K, Park Y-S, Kim Y-B. The effects of spinopelvic parameters and paraspinal muscle degeneration on S1 screw loosening. J Korean Neurosurg Soc. 2015;58(4):357–62.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tian QH, He CJ, Wu CG, Li YD, Gu YF, Wang T, Xiao QP, Li MH. Comparison of percutaneous cementoplasty with and without interventional internal fixation for impending malignant pathological fracture of the proximal femur. Cardiovasc Intervent Radiol. 2016;39(1):81–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Cazzato RL, Buy X, Eker O, Fabre T, Palussiere J. Percutaneous long bone cementoplasty of the limbs: experience with fifty-one non-surgical patients. Eur Radiol. 2014;24(12):3059–68. doi: 10.1007/s00330-014-3357-9.CrossRefPubMedGoogle Scholar
  31. 31.
    Lin PP, Kang HG, Kim YI, Kim JH, Kim HS. Minimally invasive surgery for femoral neck fractures using bone cement infusible hollow-perforated screw in high-risk patients with advanced cancer. Surg Oncol. 2015;24(3):226–31.CrossRefPubMedGoogle Scholar
  32. 32.
    Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ. Pedicle screw loosening: a clinically relevant complication? Eur Spine J. 2015;24(5):1005–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Muller ME, Allgöwer M, Schneider R, et al. Manual of internal fixation: techniques recommended by the AO/ASIF group. New York: Springer; 1995.Google Scholar
  34. 34.
    Cazzato RL, Bonichon F, Buy X, Godbert Y, de Figuereido BH, Pointillart V, Palussière J. Over ten years of single-institution experience in percutaneous image-guided treatment of bone metastases from differentiated thyroid cancer. Eur J Surg Oncol. 2015;41(9):1247–55.CrossRefPubMedGoogle Scholar
  35. 35.
    Cazzato RL, Buy X, Grasso RF, Luppi G, Faiella E, Quattrocchi CC, Pantano F, BeomonteZobel B, Tonini G, Santini D, Palussiere J. Interventional Radiologist’s perspective on the management of bone metastatic disease. Eur J Surg Oncol. 2015;41(8):967–74.CrossRefPubMedGoogle Scholar
  36. 36.
    He C, Tian Q, Wu CG, Gu Y, Wang T, Li M. Feasibility of percutaneous cementoplasty combined with interventional internal fixation for impending pathologic fracture of the proximal femur. J Vasc Interv Radiol. 2014;25(7):1112–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Abdel-Aal AK, Underwood ES, Saddekni S. Use of cryoablation and osteoplasty reinforced with Kirschner wires in the treatment of femoral metastasis. Cardiovasc Intervent Radiol. 2012;35(5):1211–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Anselmetti GC, Manca A, Chiara G, Tutton S, Iussich G, Gino G, Grignani G, Ortega C, Moselli N, Regge D. Painful pathologic fracture of the humerus: percutaneous osteoplasty with bone marrow nails under hybrid computed tomography and fluoroscopic guidance. J Vasc Interv Radiol. 2011;22(7):1031–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Kawai N, Sato M, Iwamoto T, Tanihata H, Minamiguti H, Nakata K. Percutaneous osteoplasty with use of a cement-filled catheter for a pathologic fracture of the humerus. J Vasc Interv Radiol. 2007;18(6):805–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Kelekis A, Filippiadis D, Anselmetti G, Brountzos E, Mavrogenis A, Papagelopoulos P, Kelekis N, Martin JB. Percutaneous augmented peripheral osteoplasty in long bones of oncologic patients for pain reduction and prevention of impeding pathologic fracture: the rebar concept. Cardiovasc Intervent Radiol. 2016;39(1):90–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Kelekis A, Martin JB, Anselmetti G, Filipiadis D. Regarding, “Percutaneous augmented peripheral osteoplasty in long bones of oncologic patients for pain reduction and prevention of impeding pathologic fracture: the rebar concept”: reply. Cardiovasc Intervent Radiol. 2016;39(3):479–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Steensma M, Healey JH. Trends in the surgical treatment of pathologic proximal femur fractures among Musculoskeletal Tumor Society members. Clin Orthop Relat Res. 2013;471(6):2000–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Nawathe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM. Cortical and trabecular load sharing in the human femoral neck. J Biomech. 2015;48(5):816–22.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2016

Authors and Affiliations

  • Roberto Luigi Cazzato
    • 1
  • Guillaume Koch
    • 1
  • Xavier Buy
    • 2
  • Nitin Ramamurthy
    • 3
  • Georgia Tsoumakidou
    • 1
  • Jean Caudrelier
    • 1
  • Vittorio Catena
    • 2
  • Julien Garnon
    • 1
  • Jean Palussiere
    • 2
  • Afshin Gangi
    • 1
  1. 1.Department of Interventional Radiology, Nouvel Hôpital CivilHôpitaux Universitaires de Strasbourg, HUSStrasbourgFrance
  2. 2.Department of RadiologyInstitut BergoniéBordeauxFrance
  3. 3.Department of RadiologyNorfolk and Norwich University HospitalNorwichUK

Personalised recommendations