Advertisement

CardioVascular and Interventional Radiology

, Volume 39, Issue 2, pp 151–160 | Cite as

Radiation-Induced Cataractogenesis: A Critical Literature Review for the Interventional Radiologist

  • Kevin F. Seals
  • Edward W. Lee
  • Christopher H. Cagnon
  • Ramsey A. Al-Hakim
  • Stephen T. Kee
Review

Abstract

Extensive research supports an association between radiation exposure and cataractogenesis. New data suggests that radiation-induced cataracts may form stochastically, without a threshold and at low radiation doses. We first review data linking cataractogenesis with interventional work. We then analyze the lens dose typical of various procedures, factors modulating dose, and predicted annual dosages. We conclude by critically evaluating the literature describing techniques for lens protection, finding that leaded eyeglasses may offer inadequate protection and exploring the available data on alternative strategies for cataract prevention.

Keywords

Clinical practice Radiation protection Radiation Radiation-induced cataracts Lead glasses 

Notes

Funding

All authors report no financial support.

Compliance with Ethical Standards

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. IRB approval was not required for this literature review.

Informed Consent

None.

References

  1. 1.
    Shore RE, Neriishi K, Nakashima E. Epidemiological studies of cataract risk at low to moderate radiation doses: (not) seeing is believing. Radiat Res. 2010;174:889–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Hammer GP, Scheidemann-Wesp U, Samkange-Zeeb F, Wicke H, Neriishi K, Blettner M. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys. 2013;52:303–19.CrossRefPubMedGoogle Scholar
  3. 3.
    Robman L, Taylor H. External factors in the development of cataract. Eye. 2005;19:1074–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Ainsbury EA, Bouffler SD, Dörr W, et al. Radiation cataractogenesis: a review of recent studies. Radiat Res. 2009;172:1–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Jacob S, Michael M, Brezlin A, Laurier D, Bernier M-O. Ionizing radiation as a risk factor for cataract: what about low-dose effects?. Clin Exp Ophthalmol. 2011.Google Scholar
  6. 6.
    Nakashima E, Neriishi K, Minamoto A. A reanalysis of atomic-bomb cataract data, 2000–2002: a threshold analysis. Health Phys. 2006;90:154–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Neriishi K, Nakashima E, Minamoto A, et al. Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res. 2007;168:404–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Worgul BV, Kundiyev YI, Sergiyenko NM, et al. Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res. 2007;167:233–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Miller DL, Balter S, Schueler BA, Wagner LK, Strauss KJ, Vañó E. Clinical radiation management for fluoroscopically guided interventional procedures. Radiology. 2010;257:321–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Brown KR, Rzucidlo E. Acute and chronic radiation injury. J Vasc Surg. 2011;53:15S–21S.CrossRefPubMedGoogle Scholar
  11. 11.
    Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA. 2002;99:9836–9.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Vano E, Gonzalez L, Fernandez JM, Prieto C, Guibelalde E. Influence of patient thickness and operation modes on occupational and patient radiation doses in interventional cardiology. Radiat Prot Dosim. 2006;118:325–30.CrossRefGoogle Scholar
  13. 13.
    Ainsbury EA, Bouffler S, Cocker M, et al. Public health England survey of eye lens doses in the UK medical sector. J Radiol Prot. 2014;34:15–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Vanhavere F, Carinou E, Domienik J, et al. Measurements of eye lens doses in interventional radiology and cardiology: final results of the ORAMED project. Radiat Meas. 2011;46:1243–7.CrossRefGoogle Scholar
  15. 15.
    Niklason LT, Marx MV, Chan HP. Interventional radiologists: occupational radiation doses and risks. Radiology. 1993;187:729–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Jacob S, Boveda S, Bar O, et al. Interventional cardiologists and risk of radiation-induced cataract: results of a French multicenter observational study. Int J Cardiol. 2013;167:1843–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Abatzoglou I, Koukourakis M, Konstantinides S. Reduction of the radiation dose received by interventional cardiologists following training in radiation protection. Radiat Prot Dosim. 2013;155:119–21.CrossRefGoogle Scholar
  18. 18.
    Sheyn DD, Racadio JM, Ying J, Patel MN, Johnson ND. Efficacy of a radiation safety education initiative in reducing radiation exposure in the pediatric IR suite. Pediatr Radiol. 2008;38:669–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Miller DL, Vañó E, Bartal G, et al. Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. J Vasc Interv Radiol. 2010;21:607–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Stewart FA, Akleyev AV, Hauer-Jensen M, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322.CrossRefPubMedGoogle Scholar
  21. 21.
    Ciraj-Bjelac O, Rehani M, Minamoto A, Sim KH, Liew HB, Vano E. Radiation-induced eye lens changes and risk for cataract in interventional cardiology. Cardiology. 2012;123:168–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Cucinotta FA, Manuel FK, Jones J, et al. Space radiation and cataracts in astronauts. Radiat Res. 2001;156:460–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Chodick G, Bekiroglu N, Hauptmann M, et al. Risk of cataract after exposure to low doses of ionizing radiation: a 20-year prospective cohort study among US radiologic technologists. Am J Epidemiol. 2008;168:620–31.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Hall P, Granath F, Lundell M, Olsson K, Holm LE. Lenticular opacities in individuals exposed to ionizing radiation in infancy. Radiat Res. 1999;152:190–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Piccone J. New International Commission on Radiological Protection: recommendations on the Annual Dose Limit to the Lens of the Eye. Federal Register. 2011. Web. 2014.Google Scholar
  26. 26.
    Shore RE. Radiation impacts on human health: certain, fuzzy, and unknown. Health Phys. 2014;106:196–205.CrossRefPubMedGoogle Scholar
  27. 27.
    Efstathopoulos EP, Pantos I, Andreou M, et al. Occupational radiation doses to the extremities and the eyes in interventional radiology and cardiology procedures. Br J Radiol. 2011;84:70–7.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Vañó E, González L, Beneytez F, Moreno F. Lens injuries induced by occupational exposure in non-optimized interventional radiology laboratories. Br J Radiol. 1998;71:728–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Junk A, Haskal Z, Worgul B. Cataract in interventional radiology—an occupational hazard? Invest Ophthalmol Vis Sci. 2004;45:388.Google Scholar
  30. 30.
    Vano E, Kleiman NJ, Duran A, Rehani MM, Echeverri D, Cabrera M. Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010;174:490–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Vano E, Kleiman NJ, Duran A, Romano-Miller M, Rehani MM. Radiation-associated lens opacities in catheterization personnel: results of a survey and direct assessments. J Vasc Interv Radiol. 2013;24:197–204.CrossRefPubMedGoogle Scholar
  32. 32.
    Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76:826–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Koukorava C, Carinou E, Simantirakis G, et al. Doses to operators during interventional radiology procedures: focus on eye lens and extremity dosimetry. Radiat Prot Dosim. 2011;144:482–6.CrossRefGoogle Scholar
  34. 34.
    Lie Ø, Paulsen GU, Wøhni T. Assessment of effective dose and dose to the lens of the eye for the interventional cardiologist. Radiat Prot Dosim. 2008;132:313–8.CrossRefGoogle Scholar
  35. 35.
    Sadick V, Reed W, Collins L, Sadick N, Heard R, Robinson J. Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Br J Radiol. 2010;83:379–94.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Hidajat N, Wust P, Kreuschner M, Felix R, Schröder RJ. Radiation risks for the radiologist performing transjugular intrahepatic portosystemic shunt (TIPS). Br J Radiol. 2006;79:483–6.CrossRefPubMedGoogle Scholar
  37. 37.
    McParland BJ. A study of patient radiation doses in interventional radiological procedures. Br J Radiol. 1998;71:175–85.CrossRefPubMedGoogle Scholar
  38. 38.
    Vano E, Gonzalez L, Fernández JM, Haskal ZJ. Eye lens exposure to radiation in interventional suites: caution is warranted. Radiology. 2008;248:945–53.CrossRefPubMedGoogle Scholar
  39. 39.
    Miller DL, Balter S, Cole PE, et al. Radiation doses in interventional radiology procedures: the RAD-IR study: part I: overall measures of dose. J Vasc Interv Radiol. 2003;14:711–27.CrossRefPubMedGoogle Scholar
  40. 40.
    Anastasian ZH, Strozyk D, Meyers PM, Wang S, Berman MF. Radiation exposure of the anesthesiologist in the neurointerventional suite. Anesthesiology. 2011;114:512–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Harstall R, Heini PF, Mini RL, Orler R. Radiation exposure to the surgeon during fluoroscopically assisted percutaneous vertebroplasty: a prospective study. Spine. 2005;30:1893–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Heusch P, Kröpil P, Buchbender C, et al. Radiation exposure of the radiologist’s eye lens during CT-guided interventions. Acta Radiol. 2014;55:86–90.CrossRefPubMedGoogle Scholar
  43. 43.
    Kloeckner R, dos Santos DP, Schneider J, Kara L, Dueber C, Pitton MB. Radiation exposure in CT-guided interventions. Eur J Radiol. 2013;82:2253–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Buls N, Pagés J, de Mey J, Osteaux M. Evaluation of patient and staff doses during various CT fluoroscopy guided interventions. Health Phys. 2003;85:165–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT. CT fluoroscopy–guided interventional procedures: techniques and radiation dose to radiologists. Radiology. 2001;220:161–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Dekker LR, van der Voort PH, Simmers TA, et al. New image processing and noise reduction technology allows reduction of radiation exposure in complex electrophysiologic interventions while maintaining optimal image quality: a randomized clinical trial. Heart Rhythm. 2013;10:1678–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Racadio J, Strauss K, Abruzzo T, et al. Significant dose reduction for pediatric digital subtraction angiography without impairing image quality: preclinical study in a piglet model. Am J Roentgenol. 2014;203:904–8.CrossRefGoogle Scholar
  48. 48.
    Söderman M, Holmin S, Andersson T, Palmgren C, Babic D, Hoornaert B. Image noise reduction algorithm for digital subtraction angiography: clinical results. Radiology. 2013;269:553–60.CrossRefPubMedGoogle Scholar
  49. 49.
    Söderman M, Mauti M, Boon S, et al. Radiation dose in neuroangiography using image noise reduction technology: a population study based on 614 patients. Neuroradiology. 2013;55:1365–72.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Kim KP, Miller DL. Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: a review. Radiat Prot Dosim. 2009;133:227–33.CrossRefGoogle Scholar
  51. 51.
    Sturchio GM, Newcomb RD, Molella R, Varkey P, Hagen PT, Schueler BA. Protective eyewear selection for interventional fluoroscopy. Health Phys. 2013;104:S11–6.CrossRefPubMedGoogle Scholar
  52. 52.
    van Rooijen BD, de Haan MW, Das M, et al. Efficacy of radiation safety glasses in interventional radiology. Cardiovasc Intervent Radiol. 2014;37:1149–55.CrossRefPubMedGoogle Scholar
  53. 53.
    Geber T, Gunnarrson M, Mattsson S. Eye lens dosimetry for interventional procedures e Relation between the absorbed dose to the lens and dose at measurement positions In. Radiat Meas. 2011;46:1238–51.CrossRefGoogle Scholar
  54. 54.
    Koukorava C, Farah J, Struelens L, et al. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses. J Radiol Prot. 2014;34:509–28.CrossRefPubMedGoogle Scholar
  55. 55.
    Moore WE, Ferguson G, Rohrmann C. Physical factors determining the utility of radiation safety glasses. Med Phys. 1980;7:8–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Challa K, Warren SG, Danak S, Bates MC. Redundant protective barriers: minimizing operator occupational risk. J Interv Cardiol. 2009;22:299–307.CrossRefPubMedGoogle Scholar
  57. 57.
    Dash H, Leaman DM. Operator radiation exposure during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1984;4:725–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Donadille L, Carinou E, Brodecki M, et al. Staff eye lens and extremity exposure in interventional cardiology: Results of the ORAMED project. Radiat Meas. 2011;46:1203–9.CrossRefGoogle Scholar
  59. 59.
    Maeder M, Brunner-La Rocca HP, Wolber T, et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67:18–23.CrossRefPubMedGoogle Scholar
  60. 60.
    Fetterly KA, Magnuson DJ, Tannahill GM, Hindal MD, Mathew V. Effective use of radiation shields to minimize operator dose during invasive cardiology procedures. JACC Cardiovasc Interv. 2011;4:1133–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Thornton RH, Dauer LT, Altamirano JP, Alvarado KJ. St Germain J, Solomon SB. Comparing strategies for operator eye protection in the interventional radiology suite. J Vasc Interv Radiol. 2010;21:1703–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Marichal DA, Anwar T, Kirsch D, et al. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist. J Vasc Interv Radiol. 2011;22:437–42.CrossRefPubMedGoogle Scholar
  63. 63.
    Fattal P, Goldstein JA. A novel complete radiation protection system eliminates physician radiation exposure and leaded aprons. Catheter Cardiovasc Interv. 2013;82:11–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Kloeze C, Klompenhouwer EG, Brands PJ, van Sambeek MR, Cuypers PW, Teijink JA. Editor’s choice–Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures. Eur J Vasc Endovasc Surg. 2014;47:268–72.CrossRefPubMedGoogle Scholar
  65. 65.
    King JN, Champlin AM, Kelsey CA, Tripp DA. Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. Am J Roentgenol. 2002;178:153–7.CrossRefGoogle Scholar
  66. 66.
    Simons GR, Orrison WW. Use of a sterile, disposable, radiation-absorbing shield reduces occupational exposure to scatter radiation during pectoral device implantation. Pacing Clin Electrophysiol. 2004;27:726–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Politi L, Biondi-Zoccai G, Nocetti L, et al. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield. Catheter Cardiovasc Interv. 2012;79:97–102.CrossRefPubMedGoogle Scholar
  68. 68.
    Sawdy JM, Gocha MD, Olshove V, et al. Radiation protection during hybrid procedures: innovation creates new challenges. J Invasive Cardiol. 2009;21:437–40.PubMedGoogle Scholar
  69. 69.
    Dromi S, Wood BJ, Oberoi J, Neeman Z. Heavy metal pad shielding during fluoroscopic interventions. J Vasc Interv Radiol. 2006;17:1201–6.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Germano JJ, Day G, Gregorious D, Natarajan V, Cohen T. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures. J Invasive Cardiol. 2005;17:469–72.PubMedGoogle Scholar
  71. 71.
    Murphy JC, Darragh K, Walsh SJ, Hanratty CG. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures. Am J Cardiol. 2011;108:1408–10.CrossRefPubMedGoogle Scholar
  72. 72.
    Brambilla M, Occhetta E, Ronconi M, Plebani L, Carriero A, Marino P. Reducing operator radiation exposure during cardiac resynchronization therapy. Europace. 2010;12:1769–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2015

Authors and Affiliations

  • Kevin F. Seals
    • 1
  • Edward W. Lee
    • 1
  • Christopher H. Cagnon
    • 2
    • 3
  • Ramsey A. Al-Hakim
    • 1
  • Stephen T. Kee
    • 1
  1. 1.Division of Interventional Radiology, Department of Radiology, UCLA Medical CenterDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of RadiologyUniversity of California at Los AngelesLos AngelesUSA
  3. 3.Department of Biomedical PhysicsUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations