Advertisement

CardioVascular and Interventional Radiology

, Volume 39, Issue 3, pp 376–384 | Cite as

Can 1H MR Spectroscopy be Used to Assess the Success of Uterine Artery Embolisation?

  • Gillian MacnaughtEmail author
  • G. Ananthakrishnan
  • L. Hinksman
  • R. Yadavali
  • F. Bryden
  • S. Lassman
  • M. Ritchie
  • K. Gallacher
  • C. Hay
  • J. G. Moss
Clinical Investigation

Abstract

Purpose

Absence of contrast on contrast enhanced MRI (CEMRI) and reduction in uterine volume at 6 months post-uterine artery embolisation (UAE) currently indicate the successful disruption of the fibroid blood supply by UAE. This study assesses whether 1H MR spectroscopy (1H MRS) can also indicate the success of UAE.

Method

20 patients with symptomatic fibroids were randomised 1:1 to undergo UAE with either Gelfoam or Embospheres. CEMRI and spectra (1.5 T) were acquired pre-, 24-h and 6 months post-UAE. LCModel was used to detect significant levels of choline, creatine and lactate in fibroid spectra. Uterine volumes were measured and paired t tests (p < 0.05) assessed volume reduction over time. Qualitative assessments of CEMRI were performed.

Results

Choline was detected in 17/18 spectra pre-UAE, 12/14 at 24-h and 6/16 at 6 months post-UAE. Choline was not detected in the 7/7 spectra available for the Embospheres group at 6 months. These fibroids were non-enhancing on CEMRI and associated with a significant reduction in mean uterine volume at 6 months (mean/min/max 396.5/84.1/997.5 cm3, p = 0.003). Choline was detected in 6/9 fibroid spectra available for the Gelfoam group at 6 months. Of these fibroids, four demonstrated persistent enhancement on CEMRI and two were non-enhancing. This group did not demonstrate significant uterine volume reduction (mean/min/max 117.2/−230.6/382.6 cm3, p = 0.15). The negative minimum value indicates fibroid growth.

Conclusions

This study has demonstrated the potential of 1H MRS to provide an additional marker of the success of UAE.

Keywords

MR spectroscopy Uterine fibroids Uterine artery embolisation 

Notes

Acknowledgments

The authors gratefully acknowledge the funding received from the British Society of Interventional Radiology to carry out this study (Grant Reference 985345).

Compliance with Ethical Standards

Conflict of interest

This study was funded by the British Society of Interventional Radiology (grant number 985345). This is reported in the disclosure forms for authors 1, 4 and 10. All authors declare that they have no conflicts of interest.

References

  1. 1.
    Uterine Artery Embolisation for fibroids. National Institute for Health and Clinical Excellence Web Site. http://publications.nice.org.uk/uterine-artery-embolisation-for-fibroids-ipg367/guidance. Published November 2010. Accessed 14th Oct 2013.
  2. 2.
    Siddiqui N, Nikolaidis P, Hammond N, Miller FH. Uterine artery embolization: pre- and post- procedural evaluation using magnetic resonance imaging. Abdom Imaging. 2013;38(5):1161–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Kirby JM, Burrows D, Haider E, Maizlin Z, Midia M. Utility of MRI before and after Uterine Fibroid Emobolization: why to do it and what to look for. Cardiovasc Intervent Radiol. 2011;34(4):705–16.CrossRefPubMedGoogle Scholar
  4. 4.
    Thomason P. Uterine leiomyoma (fibroid) imaging. Medscape website. http://emedicine.medscape.com/article/405676-overview#a2. Published April 4, 2012. Accessed 14th Oct 2013.
  5. 5.
    Wilde S, Scott-Barrett S. Radiological appearances of uterine fibroids. Indian J Radiol Imaging. 2009;19(3):222–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Burn PR, McCall JM, Chinn RJ, Vashisht A, Smith JR, Healy JC. Uterine Fibroleiomyoma: MR imaging appearance before and after embolization of uterine arteries. Radiology. 2000;214(3):729–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Harman M, Zeteroğlu Ş, Arslan H, Şengül M, Etlik Ö. Predictive value of magnetic resonance imaging signal and contrast-enhancement characteristics on post-embolization volume reduction of uterine fibroids. Acta Radiol. 2006;47(4):427–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Firouznia K, Ghanaati H, Sanaati M, Jalali AH, Shakiba M. Uterine artery embolisation in 101 cases of uterine fibroids: do size, location and number of fibroids affect therapeutic success and complications? Cardiovasc Intervent Radiol. 2008;31(3):521–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Spies JB, Roth AR, Jha RC, Levy EB, Chang TC, Ascher SA. Leiomyomata treated with uterine artery embolization: factors associated with successful symptom and imaging outcomes. Radiology. 2002;222(1):45–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Smeets AJ, Nijenhuis RJ, van Rooij WJ, Weimar EAM, Boekkooi PF, Lampmann LEH, Vervest HAM, Lohle PNM. Uterine artery embolization in patients with a large fibroid burden: long term clinical and MR follow-up. Cardiovasc Intervent Radiol. 2010;33(5):943–8.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Ananthakrishnan G, Macnaught G, Hinksman L, Gilmour H, Forbes KP, Moss JG. Diffusion-weighted imaging in uterine artery embolisation: do findings correlate with contrast enhancement and volume reduction? Br J Radiol. 1019;2012(85):e1046–50.Google Scholar
  12. 12.
    Okada T, Harada M, Matsuzaki K, Nishitani H, Aono T. Evaluation of female intrapelvic tumours by clinical proton MR spectroscopy. J Magn Reson Imaging. 2001;13(6):912–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Celik O, Sararc K, Hascalik S, Alkan A, Mizrak B, Yologlu S. Magnetic Resonance spectroscopy of uterine leiomyomas. Gynecol Obstet Inves. 2004;58(4):194–201.CrossRefGoogle Scholar
  14. 14.
    Ott D, Hennig J, Ernst T. Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology. 1993;186(3):745–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Julià-Sapé M, Coronel I, Majós C, Candiota AP, Serrallonga M, Cos M, Aguilera C, Acebes JJ, Griffiths JR, Arús C. Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours. NMR Biomed. 2012;25(4):661–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Heerschap A, Jager GJ, van der Graaf M, Barentsz JO, de la Rosette JJ, Oosterhof GO, Ruijter ET, Ruijs SH. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res. 1997;17(3A):1455–60.PubMedGoogle Scholar
  17. 17.
    Garcia-Segura JM, Sanchez-Chapado M, Ibarburen C, Viano J, Angulo JC, Gonzalez J, Rodriguez-Vallejo JM. In vivo proton magnetic resonance spectroscopy of diseased prostate: spectroscopic features of malignany versus benign pathology. Magn Reson Imaging. 1999;17(5):755–65.CrossRefPubMedGoogle Scholar
  18. 18.
    Begley JKP, Redpath TW, Bolan PJ, Gilbert FJ. In vivo magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res. 2012;14(2):207–16.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kwock L, Smith JK, Castillo M, Eqend MG, Collichio F, Morris DE, Bouldin TW, Cush S. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast and prostate cancer. Lancet Oncol. 2006;7(10):859–68.CrossRefPubMedGoogle Scholar
  20. 20.
    Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnet Reson Med. 1993;30(6):672–9.CrossRefGoogle Scholar
  21. 21.
    Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61(9):3599–603.PubMedGoogle Scholar
  22. 22.
    Chen J-H, Mehta RS, Baek H-M, Nie K, Liu H, Lin MQ, Yu HJ, Nalcioglu O, Su M-Y. Clinical characteristics and biomarkers of breast cancer associated with choline concentration measured by 1H MR spectroscopy. NMR Biomed. 2011;24(3):316–24.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Horská A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Provencher S. LCModel and LCMgui user manual. http://www.s-provencher.com/pub/LCModel/manual/manual.pdf. Published 14th Sept 2013.
  25. 25.
    McLean MA, Priest AN, Joubert I, Lomas DJ, Kataoka MY, Earl H, Crawford R, Brenton JD, Griffiths JR, Sala E. Metabolite characterization of primary and metastatic ovarian cancer by 1H-MRS in vivo at 3T. Magn Reson Med. 2009;62(4):855–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Booth SJ, Pickles MD, Turnbull LW. In vivo magnetic resonance spectroscopy of gynaecological tumours at 3.0 Tesla. BJOG. 2009;116(2):300–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835–48.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Dorenberg EJ, Novakovic Z, Smith HJ, Hafsahl G, Jakobsen JÅ. Uterine fibroid embolisation can still be improved: observations on post-procedure magnetic resonance imaging. Acta Radiol. 2005;46(5):547–53.CrossRefPubMedGoogle Scholar
  29. 29.
    Binkert CA, Andrews RT, Kaufman JA. Utility of nonselective abdominal aortography in demonstrating ovarian artery collaterals in patients undergoing uterine artery embolization for fibroids. J Vasc Interv Radiol. 2001;12(7):841–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Pelage J-P, Cazejust J, Pluot E, Le Dref O, Laurent A, Spies JB, Chagnon S, Lacombe P. Uterine fibroid vascularization and clinical relevance to uterine fibroid embolization. Radiographics. 2005;25(suppl 1):S99–117.CrossRefPubMedGoogle Scholar
  31. 31.
    McKnight TR, Smith KJ, Chu PW, Chiu KS, Cloyd CP, Chang SM, Phillips JJ, Berger MS. Choline metabolism, proliferation and angiogenesis in nonenhancing grades 2 and 3 astrocytoma. J Mag Res Med. 2011;33:808–16.Google Scholar
  32. 32.
    Wu X, Blanck A, Olovsson M, Moller B, Favini R, Lindblom B. Apoptosis, cellular proliferation and expression of p53 in human uterine leiomyomas and myometrium during the menstrual cycle and after menopause. Acta Obstet Gynecol Scand. 2000;79(5):397–404.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2015

Authors and Affiliations

  • Gillian Macnaught
    • 1
    Email author
  • G. Ananthakrishnan
    • 2
  • L. Hinksman
    • 3
  • R. Yadavali
    • 2
  • F. Bryden
    • 4
  • S. Lassman
    • 5
  • M. Ritchie
    • 2
  • K. Gallacher
    • 6
  • C. Hay
    • 7
  • J. G. Moss
    • 2
  1. 1.Clinical Research Imaging Centre, Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUK
  2. 2.Interventional Radiology UnitGartnavel General HospitalGlasgowUK
  3. 3.Radiology DepartmentWishaw General HospitalWishawUK
  4. 4.Radiology DepartmentStobhill HospitalGlasgowUK
  5. 5.Radiology DepartmentGartnavel General HospitalGlasgowUK
  6. 6.School of Mathematics and Statistics, University GardensUniversity of GlasgowGlasgowUK
  7. 7.Interventional RadiologyRoyal Infirmary of EdinburghEdinburghUK

Personalised recommendations