CardioVascular and Interventional Radiology

, Volume 38, Issue 4, pp 985–992 | Cite as

Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results

  • Elena A. Kaye
  • Narendra Babu Gutta
  • Sebastien Monette
  • Amitabh Gulati
  • Jeffrey Loh
  • Govindarajan Srimathveeravalli
  • Paula C. Ezell
  • Joseph P. Erinjeri
  • Stephen B. Solomon
  • Majid Maybody
Laboratory Investigation



Spastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system.


The HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging.


Reddening and mild thickening of the nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8–64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7–34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average.


The acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.


HIFU Neurolysis Sciatic nerve MRI Ablation 



We thank Dr. Haruyuki Takaki for discussion of swine anatomy imaging and Dr. Rachelle Bitton for valuable discussion of thermometry during MRgHIFU. Grant Support: Memorial Sloan-Kettering Society grant. This work used core facilities funded by NIH Core Grant # P30 CA 008748.

Conflict of interest

Stephen B Solomon has received research grant and personal fees from GE Healthcare. Elena A Kaye, Narendra Babu Gutta, Sebastien Monette, Amitabh Gulati, Jeffrey Loh, Govindarajan Srimathveeravalli, Paula C Ezell, Joseph P Erinjeri, and Majid Maybody declare that they have no conflicts of interest.

Ethical standard

All applicable institutional and/or national guidelines for the care and use of animals were followed.


  1. 1.
    Gündtiz S, Kalyon T, Dursun H, Möhür H, Bilgic F. Peripheral nerve block with phenol to treat spasticity in spinal cord injured patients. Spinal Cord. 1992;30(11):808–11.CrossRefGoogle Scholar
  2. 2.
    Viel EJ, Perennou D, Ripari J, Pélissier J, Eledjam JJ. Neurolytic blockade of the obturator nerve for intractable spasticity of adductor thigh muscles. Eur J Pain. 2002;6(2):97–104.PubMedCrossRefGoogle Scholar
  3. 3.
    de Oliveira R, dos Reis MP, Prado WA. The effects of early or late neurolytic sympathetic plexus block on the management of abdominal or pelvic cancer pain. Pain. 2004;110(1):400–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson GE, Moore DC, Bridenbaugh LD, Artin RY. Abdominal pain and alcohol celiac plexus nerve block. Anesth Analg. 1977;56(1):1–5.PubMedGoogle Scholar
  5. 5.
    Smyth MD, Peacock WJ. The surgical treatment of spasticity. Muscle Nerve. 2000;23(2):153–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Koyyalagunta D, Mazloomdoost D. Radiofrequency and cryoablation for cancer pain. Tech Reg Anesth Pain Manag. 2010;14(1):3–9.CrossRefGoogle Scholar
  7. 7.
    Loev MA, Varklet VL, Wilsey BL, Ferrante MF. Cryoablation: a novel approach to neurolysis of the ganglion impar. Anesthesiology. 1998;88(5):1391–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Shealy CN. Percutaneous radiofrequency denervation of spinal facets: treatment for chronic back pain and sciatica. J Neurosurg. 1975;43(4):448–51.PubMedCrossRefGoogle Scholar
  9. 9.
    Windsor RE, Storm S, Sugar R. Prevention and management of complications resulting from common spinal injections. Pain Phys. 2003;6(4):473–84.Google Scholar
  10. 10.
    McManus CD, Jackson SD, Pampati V, Fellows B. A prospective evaluation of bleeding risk of interventional techniques in chronic pain. Pain Phys. 2011;14:317–29.Google Scholar
  11. 11.
    Benzon HT, Khan F. Complications associated with neurolytic blocks. Complicat: Reg Anesth Pain Med; 2012. p. 342.Google Scholar
  12. 12.
    Maier C, Gleim M, Weiss T, Stachetzki U, Nicolas V, Zenz M. Severe bleeding following lumbar sympathetic blockade in two patients under medication with irreversible platelet aggregation inhibitors. Anesthesiology. 2002;97(3):740–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Jolesz FA. MRI-guided focused ultrasound surgery. Ann Rev Med. 2009;60:417.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Napoli A, Anzidei M, Ciolina F, Marotta E, Cavallo Marincola B, Brachetti G, et al. MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Interv Radiol. 2013;36(5):1190–203.CrossRefGoogle Scholar
  15. 15.
    Ter Haar G. Ultrasound focal beam surgery. Ultrasound Med Biol. 1995;21(9):1089–100.PubMedCrossRefGoogle Scholar
  16. 16.
    Hindley J, Gedroyc WM, Regan L, Stewart E, Tempany C, Hynnen K, et al. MRI guidance of focused ultrasound therapy of uterine fibroids: early results. Am J Roentgenol. 2004;183(6):1713–9.CrossRefGoogle Scholar
  17. 17.
    Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004;42(1–9):931–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Merckel L, Bartels L, Köhler M, van den Bongard HJGD, Deckers R, Mali WTM, et al. MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform. Cardiovasc Interv Radiol. 2013;36(2):292–301.CrossRefGoogle Scholar
  19. 19.
    Uchida T, Sanghvi NT, Gardner TA, Koch MO, Ishii D, Minei S, et al. Transrectal high-intensity focused ultrasound for treatment of patients with stage T1b-2n0m0 localized prostate cancer: a preliminary report. Urology. 2002;59(3):394–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Annal Neurol. 2009;66(6):858–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Hurwitz MD, Ghanouni P, Kanaev SV, Iozeffi D, Gianfelice D, Fennessy FM, et al. Magnetic resonance—guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Nat Cancer Inst. 2014;106(5):dju082.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Harnof S, Zibly Z, Shay L, Dogadkin O, Hanannel A, Inbar Y, et al. Magnetic resonance-guided focused ultrasound treatment of facet joint pain: summary of preclinical phase. J Therap Ultrasound. 2014;2(1):9.CrossRefGoogle Scholar
  23. 23.
    Gulati A, Loh J, Gutta NB, Ezell PC, Monette S, Erinjeri JP, et al. Novel use of noninvasive high-intensity focused ultrasonography for intercostal nerve neurolysis in a swine model. Reg Anesth Pain Med. 2014;39(1):26–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Freyhardt P, Heckmann L, Beck A, Stolzenburg N, Schnorr J, Kamp J, et al. MR-guided high-focused ultrasound for renal sympathetic denervation—a feasibility study in pigs. J Therap Ultrasound. 2014;2(1):12.CrossRefGoogle Scholar
  25. 25.
    Lee YF, Lin CC, Cheng JS, Chen GS. High-intensity focused ultrasound attenuates neural responses of sciatic nerves isolated from normal or neuropathic rats. Ultrasound Med Biol. 2015;41(1):132–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Foley JL, Little JW, Starr FL III, Frantz C, Vaezy S. Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain. Ultrasound Med Biol. 2004;30(9):1199–207.PubMedCrossRefGoogle Scholar
  27. 27.
    Bouley DM, Daniel B, Pauly KB, Liu E, Kinsey A, Nau W, et al. Correlation of contrast-enhanced MR images with the histopathology of minimally invasive thermal and cryoablation cancer treatments in normal dog prostates. Proc Soc Photo Opt Instrum Eng. 2007;6440:644006.Google Scholar
  28. 28.
    Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34(6):814–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu D, Pollock M. Experimental nerve thermal injury. Brain. 1994;117(2):375–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Schoellnast H, Monette S, Ezell PC, Deodhar A, Maybody M, Erinjeri JP, et al. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig model. Radiology. 2011;260(2):421–7.PubMedCrossRefGoogle Scholar
  31. 31.
    McDannold N, King RL, Hynynen K. MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs. Magn Reson Med. 2004;51(5):1061–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Voogt M, Trillaud H, Kim Y, Mali WTM, Barkhausen J, Bartels L, et al. Volumetric feedback ablation of uterine fibroids using magnetic resonance-guided high intensity focused ultrasound therapy. Eur Radiol. 2012;22(2):411–7.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Bitton RR, Webb TD, Ghanouni P, Pauly KB (eds) (2014) Prior baseline thermometry for improved thermal dose prediction in MRgFUS of desmoid tumors. ISMRM.Google Scholar
  34. 34.
    Wright J. RANG A. The spastic mouse: and the search for an animal model of spasticity in human beings. Clin Orthop Relat Res. 1990;253:12–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2015

Authors and Affiliations

  • Elena A. Kaye
    • 1
  • Narendra Babu Gutta
    • 2
  • Sebastien Monette
    • 4
  • Amitabh Gulati
    • 3
  • Jeffrey Loh
    • 3
  • Govindarajan Srimathveeravalli
    • 2
  • Paula C. Ezell
    • 4
  • Joseph P. Erinjeri
    • 2
  • Stephen B. Solomon
    • 2
  • Majid Maybody
    • 2
  1. 1.Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Department of Anesthesiology-Critical CareMemorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeThe Rockefeller UniversityNew YorkUSA

Personalised recommendations