CardioVascular and Interventional Radiology

, Volume 38, Issue 5, pp 1192–1197 | Cite as

Respiratory-Induced Haemodynamic Changes: A Contributing Factor to IVC Filter Penetration

  • Alicia Laborda
  • William T. Kuo
  • Ignatios Ioakeim
  • Ignacio De Blas
  • Mauro Malvè
  • Celia Lahuerta
  • Miguel A. De Gregorio
Clinical Investigation

Abstract

Purpose

The purpose of the study is to evaluate the influence of respiratory-induced vena caval hemodynamic changes on filter migration/penetration.

Materials and Methods

After placement of either a Gunther Tulip or Celect IVC filter, 101 consecutive patients scheduled for filter retrieval were prospectively enrolled in this study. Pre-retrieval CT scans were used to assess filter complications and to calculate cross-sectional area in three locations: at level of filter strut fixation, 3 cm above and 3 cm below. A 3D finite element simulation was constructed on these data and direct IVC pressure was recorded during filter retrieval. Cross-sectional areas and pressures of the vena cava were measured during neutral breathing and in Valsalva maneuver and identified filter complications were recorded. A statistical analysis of these variables was then performed.

Results

During Valsalva maneuvers, a 60 % decrease of the IVC cross-sectional area and a fivefold increase in the IVC pressure were identified (p < 0.001). There was a statistically significant difference in the reduction of the cross-sectional area at the filter strut level (p < 0.001) in patient with filter penetration. Difficulty in filter retrieval was higher in penetrated or tilted filters (p < 0.001; p = 0.005). 3D computational models showed significant IVC deformation around the filter during Valsalva maneuver.

Conclusion

Caval morphology and hemodynamics are clearly affected by Valsalva maneuvers. A physiological reduction of IVC cross-sectional area is associated with higher risk of filter penetration, despite short dwell times. Physiologic data should be used to improve future filter designs to remain safely implanted over longer dwell times.

Keywords

Vena cava filter Deep vein thrombosis Valsalva maneuver Complications Penetration 

Notes

Conflict of interest

Alicia Laborda, William T. Kuo, Ignatios Ioakeim, Ignacio de Blas, Mauro Malvè, Celia Lahuerta and Miguel A. De Gregorio declare that they have no conflicts of interest.

References

  1. 1.
    Ray CE Jr, Kaufman JA (1996) Complications of inferior vena cava filters. Abdom Imaging 21(4):368–374CrossRefPubMedGoogle Scholar
  2. 2.
    Joels CS, Sing RF, Heniford BT (2003) Complications of inferior vena cava filters. Am Surg 69(8):654–659PubMedGoogle Scholar
  3. 3.
    Kuo WT, Robertson SW, Odegaard JI, Hofmann LV (2013) Complex retrieval of fractured, embedded, and penetrating inferior vena cava filters: a prospective study with histologic and electron microscopic analysis. J Vasc Interv Radiol 24(5):622.e1–630.e1. doi:10.1016/j.jvir.2013.01.008 quiz 631CrossRefGoogle Scholar
  4. 4.
    Oh JC, Trerotola SO, Dagli M, Shlansky-Goldberg RD, Soulen MC, Itkin M et al (2011) Removal of retrievable inferior vena cava filters with computed tomography findings indicating tenting or penetration of the inferior vena cava wall. J Vasc Interv Radiol 22(1):70–74. doi:10.1016/j.jvir.2010.09.021 CrossRefPubMedGoogle Scholar
  5. 5.
    Hull JE, Robertson SW (2009) Bard Recovery filter: evaluation and management of vena cava limb perforation, fracture, and migration. J Vasc Interv Radiol 20(1):52–60. doi:10.1016/j.jvir.2008.09.032 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou D, Moon E, Bullen J, Sands M, Levitin A, Wang W (2014) Penetration of Celect inferior vena cava filters: retrospective review of CT scans in 265 patients. AJR Am J Roentgenol 202(3):643–647. doi:10.2214/AJR.13.11097 CrossRefPubMedGoogle Scholar
  7. 7.
    Wang W, Zhou D, Obuchowski N, Spain J, An T, Moon E (2013) Fracture and migration of Celect inferior vena cava filters: a retrospective review of 741 consecutive implantations. J Vasc Interv Radiol 24(11):1719–1722. doi:10.1016/j.jvir.2013.07.019 CrossRefPubMedGoogle Scholar
  8. 8.
    Laborda A, Sierre S, Malvè M, De Blas I, Ioakeim I, Kuo WT, De Gregorio MA (2014) Influence of breathing movements and Valsalva maneuver on vena caval dynamics. World J Radiol 6(10):833–839. doi:10.4329/wjr.v6.i10.833 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188(4):927–933CrossRefPubMedGoogle Scholar
  10. 10.
    Caplin DM, Nikolic B, Kalva SP, Ganguli S, Saad WE, Zuckerman DA, Society of Interventional Radiology Standards of Practice Committee (2011) Quality improvement guidelines for the performance of inferior vena cava filter placement for the prevention of pulmonary embolism. J Vasc Interv Radiol 22(11):1499–1506. doi:10.1016/j.jvir.2011.07.012 PubMedGoogle Scholar
  11. 11.
    Greenfield LJ, Rutherford RB (1999) Recommended reporting standards for vena caval filter placement and patient follow-up. Vena Caval Filter Consensus Conference. J Vasc Interv Radiol 10(8):1013–1019CrossRefPubMedGoogle Scholar
  12. 12.
    Millward SF, Grassi CJ, Kinney TB, Kundu S, Becker GJ, Cardella JF et al (2005) Reporting standards for inferior vena caval filter placement and patient follow-up: supplement for temporary and retrievable/optional filters. J Vasc Interv Radiol 16(4):441–443CrossRefPubMedGoogle Scholar
  13. 13.
    Stein PD, Alnas M, Skaf E, Kayali F, Siddiqui T, Olson RE et al (2004) Outcome and complications of retrievable inferior vena cava filters. Am J Cardiol 94(8):1090–1093CrossRefPubMedGoogle Scholar
  14. 14.
    Kinney TB (2012) Primum non nocere. J Vasc Interv Radiol 23(12):1564–1565. doi:10.1016/j.jvir.2012.10.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Durack JC, Westphalen AC, Kekulawela S, Bhanu SB, Avrin DE, Gordon RL et al (2012) Perforation of the IVC: rule rather tan exception after longer indwelling times for the Gunther Tulip and Celect retrievable filters. Cardiovasc Intervent Radiol 35(2):299–308. doi:10.1007/s00270-011-0151-9 CrossRefPubMedGoogle Scholar
  16. 16.
    Sadaf A, Rasuli P, Olivier A, Hadziomerovic A, French GJ, Aquino J et al (2007) Significant caval penetration by the celect inferior vena cava filter: attributable to filter design? J Vasc Interv Radiol 18(11):1447–1450CrossRefPubMedGoogle Scholar
  17. 17.
    Olorunsola OG, Kohi MP, Fidelman N, Westphalen AC, Kolli PK, Taylor AG et al (2013) Caval penetration by retrievable inferior vena cava filters: a retrospective comparison of Option and Günther Tulip filters. J Vasc Interv Radiol 24(4):566–571. doi:10.1016/j.jvir.2012.12.024 CrossRefPubMedGoogle Scholar
  18. 18.
    Ferris EJ, McCowan TC, Carver DK, McFarland DR (1993) Percutaneous inferior vena caval filters: follow-up of seven designs in 320 patients. Radiology 188(3):851–856CrossRefPubMedGoogle Scholar
  19. 19.
    Tsekouras N, Whalen RC, Comerota AJ (2013) Lumbar artery pseudoaneurysm in a patient with inferior vena cava filter and history of strenuous physical exercise. J Vasc Surg. doi:10.1016/j.jvs.2013.09.057 PubMedGoogle Scholar
  20. 20.
    Ward WH, Donahue, Platz TA, Scibelli CD (2013) Duodenal penetration of an inferior vena cava filter: case report and literature review. Vascular 21(6):386–390CrossRefPubMedGoogle Scholar
  21. 21.
    Kassis C, Kalva SP (2013) Inferior vena cava filter penetration resulting in renal pelvis rupture with urinoma formation. Vasc Endovascular Surg 47(1):70–72. doi:10.1177/1538574412465477 CrossRefPubMedGoogle Scholar
  22. 22.
    Connolly PH, Balachandran VP, Trost D, Bush HL Jr (2012) Open surgical inferior vena cava filter retrieval for caval perforation and a novel technique for minimal cavotomy filter extraction. J Vasc Surg 56(1):256–259. doi:10.1016/j.jvs.2011.12.065 discussion 259CrossRefPubMedGoogle Scholar
  23. 23.
    Lee JK, So YH, Choi YH, Park SS, Heo EY, Kim DK et al (2014) Clinical course and predictive factors for complication of inferior vena cava filters. Thromb Res 133(4):538–543. doi:10.1016/j.thromres.2014.01.004 CrossRefPubMedGoogle Scholar
  24. 24.
    US Department of Health and Human Services; US Food and Drug Administration. Removing Retrievable Inferior Vena Cava Filters: FDA Safety Communication. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm396377.htm. Accessed Nov 1 2014

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2015

Authors and Affiliations

  • Alicia Laborda
    • 1
  • William T. Kuo
    • 2
  • Ignatios Ioakeim
    • 1
  • Ignacio De Blas
    • 3
  • Mauro Malvè
    • 4
    • 5
  • Celia Lahuerta
    • 1
  • Miguel A. De Gregorio
    • 1
    • 5
  1. 1.Minimally Invasive Techniques Research Group (GITMI)Universidad de ZaragozaSaragossaSpain
  2. 2.Division of Vascular and Interventional RadiologyStanford University Medical CenterStanfordUSA
  3. 3.Unit of Infectious Diseases and Epidemiology, Department of Animal PathologyUniversidad de ZaragozaSaragossaSpain
  4. 4.Department of Mechanical, Energy and Materials EngineeringUniversidad Pública de NavarraPamplonaSpain
  5. 5.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)SaragossaSpain

Personalised recommendations