CardioVascular and Interventional Radiology

, Volume 38, Issue 2, pp 261–269 | Cite as

Radioembolization Dosimetry: The Road Ahead

  • Maarten L. J. Smits
  • Mattijs Elschot
  • Daniel Y. Sze
  • Yung H. Kao
  • Johannes F. W. Nijsen
  • Andre H. Iagaru
  • Hugo W. A. M. de Jong
  • Maurice A. A. J. van den Bosch
  • Marnix G. E. H. Lam
Review/State of the Arti


Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.


Interventional oncology Radioembolization Liver/hepatic 



The work of M. Smits was supported by the Foundation for Image-guided Cancer Treatments (in Dutch: Stichting Beeldgestuurde Behandeling van Kanker) and by the Alexandre Suerman MD/PhD grant of the University Medical Center Utrecht.

Conflict of interest

D. Sze is consultant for W.L. Gore, Inc., Guerbet, Inc., Codman/J&J, Inc., Covidien, Inc., Embolx, Inc., Amgen, Inc., and BTG, Inc., and is member of the scientific/medical advisory board of Surefire Medical, Inc., Koli, Inc., Treus Medical, Inc., RadiAction Medical, Inc., Lunar Design, Inc., and Northwind Medical, Inc. Y. Kao had previously received research funding from Sirtex Medical Singapore. J. Nijsen is co-inventor of 166-holmium PLLA-microspheres and the patents are assigned to University Medical Center Utrecht Holding BV. J. Nijsen is Chief Scientific Officer at Quirem Medical BV. The other authors declare that they have no conflict of interest.

Statement of Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Rosenbaum CE, Verkooijen HM, Lam MG, Smits ML, Koopman M et al (2013) Radioembolization for treatment of salvage patients with colorectal cancer liver metastases: a systematic review. J Nucl Med 54:1890–1895CrossRefPubMedGoogle Scholar
  2. 2.
    Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R (2012) Radioembolization for the treatment of liver tumors general principles. Am J Clin Oncol 35:91–99CrossRefPubMedGoogle Scholar
  3. 3.
    Lewandowski RJ, Sato KT, Atassi B, Ryu RK, Nemcek AA Jr et al (2007) Radioembolization with 90Y microspheres: angiographic and technical considerations. Cardiovasc Intervent Radiol 30:571–592CrossRefPubMedGoogle Scholar
  4. 4.
    Hamami ME, Poeppel TD, Muller S, Heusner T, Bockisch A et al (2009) SPECT/CT with 99mTc-MAA in radioembolization with 90Y microspheres in patients with hepatocellular cancer. J Nucl Med 50:688–692CrossRefPubMedGoogle Scholar
  5. 5.
    Liu D, Cade DN, Worsley D, Klass D, Lim H, et al (2013) Single procedure yttrium-90 (SPY90). Pilot study of consolidated single procedure selective internal radiation therapy (SIRT) utilizing yttrium-90 resin microspheres: preliminary results. CIRSE Accessed 1 Feb 2014
  6. 6.
    Abdelmaksoud MH, Hwang GL, Louie JD, Kothary N, Hofmann LV et al (2010) Development of new hepaticoenteric collateral pathways after hepatic arterial skeletonization in preparation for yttrium-90 radioembolization. J Vasc Interv Radiol 21:1385–1395CrossRefPubMedGoogle Scholar
  7. 7.
    Salem R, Parikh P, Atassi B, Lewandowski RJ, Ryu RK et al (2008) Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution. Am J Clin Oncol 31:431–438CrossRefPubMedGoogle Scholar
  8. 8.
    Lambert B, Mertens J, Sturm EJ, Stienaers S, Defreyne L et al (2010) 99mTc-labelled macroaggregated albumin (MAA) scintigraphy for planning treatment with 90Y microspheres. Eur J Nucl Med Mol Imaging 37:2328–2333CrossRefPubMedGoogle Scholar
  9. 9.
    Hung JC, Redfern MG, Mahoney DW, Thorson LM, Wiseman GA (2000) Evaluation of macroaggregated albumin particle sizes for use in pulmonary shunt patient studies. J Am Pharm Assoc 40:46–51Google Scholar
  10. 10.
    Lenoir L, Edeline J, Rolland Y, Pracht M, Raoul JL et al (2012) Usefulness and pitfalls of MAA SPECT/CT in identifying digestive extrahepatic uptake when planning liver radioembolization. Eur J Nucl Med Mol Imaging 39:872–880CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Sangro B, Gil-Alzugaray B, Rodriguez J, Sola I, Martinez-Cuesta A et al (2008) Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 112:1538–1546CrossRefPubMedGoogle Scholar
  12. 12.
    Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L et al (2008) Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres. Phys Med Biol 53:6591–6603CrossRefPubMedGoogle Scholar
  13. 13.
    Gray B, Van Hazel G, Hope M, Burton M, Moroz P et al (2001) Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 12:1711–1720CrossRefPubMedGoogle Scholar
  14. 14.
    Vauthey JN, Abdalla EK, Doherty DA, Gertsch P, Fenstermacher MJ et al (2002) Body surface area and body weight predict total liver volume in Western adults. Liver Transpl 8:233–240CrossRefPubMedGoogle Scholar
  15. 15.
    Sirtex (2014) SIR-Spheres Yttrium-90 Resin Microspheres Package Insert. Available at: Accessed 19 Dec 2014
  16. 16.
    Lam MG, Louie JD, Abdelmaksoud MH, Fisher GA, Cho-Phan CD et al (2014) Limitations of body surface area-based activity calculation for radioembolization of hepatic metastases in colorectal cancer. J Vasc Interv Radiol 25:1085–1093CrossRefPubMedGoogle Scholar
  17. 17.
    BTG (2014) Therasphere yttrium-90 glass microspheres [package insert]. Available at: Accessed 19 Dec 2014
  18. 18.
    Gulec SA, Mesoloras G, Stabin M (2006) Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations. J Nucl Med 47:1209–1211PubMedGoogle Scholar
  19. 19.
    Ho S, Lau WY, Leung TW, Johnson PJ (1998) Internal radiation therapy for patients with primary or metastatic hepatic cancer: a review. Cancer 83:1894–1907CrossRefPubMedGoogle Scholar
  20. 20.
    Riaz A, Gates VL, Atassi B, Lewandowski RJ, Mulcahy MF et al (2011) Radiation segmentectomy: a novel approach to increase safety and efficacy of radioembolization. Int J Radiat Oncol Biol Phys 79:163–171CrossRefPubMedGoogle Scholar
  21. 21.
    Ho S, Lau WY, Leung TW, Chan M, Ngar YK et al (1996) Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours. Eur J Nucl Med 23:947–952CrossRefPubMedGoogle Scholar
  22. 22.
    Lau WY, Kennedy AS, Kim YH, Lai HK, Lee RC et al (2012) Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int J Radiat Oncol Biol Phys 82:401–407CrossRefPubMedGoogle Scholar
  23. 23.
    Lam MG, Goris ML, Iagaru AH, Mittra ES, Louie JD et al (2013) Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med 54:2055–2061CrossRefPubMedGoogle Scholar
  24. 24.
    Powerski MJ, Scheurig-Munkler C, Banzer J, Schnapauff D, Hamm B et al (2012) Clinical practice in radioembolization of hepatic malignancies: a survey among interventional centers in Europe. Eur J Radiol 81:e804–e811CrossRefPubMedGoogle Scholar
  25. 25.
    Stuart JE, Tan B, Myerson RJ, Garcia-Ramirez J, Goddu SM et al (2008) Salvage radioembolization of liver-dominant metastases with a resin-based microsphere: initial outcomes. J Vasc Interv Radiol 19:1427–1433CrossRefPubMedGoogle Scholar
  26. 26.
    Michels NA (1966) Newer anatomy of the liver and its variant blood supply and collateral circulation. Am J Surg 112:337–347CrossRefPubMedGoogle Scholar
  27. 27.
    Kao YH, Hock Tan AE, Burgmans MC, Irani FG, Khoo LS et al (2012) Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization. J Nucl Med 53:559–566CrossRefPubMedGoogle Scholar
  28. 28.
    Louie JD, Kothary N, Kuo WT, Hwang GL, Hofmann LV et al (2009) Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization. J Vasc Interv Radiol 20:606–613CrossRefPubMedGoogle Scholar
  29. 29.
    Van de Wiele C, Maes A, Brugman E, D’Asseler Y, De Spiegeleer B et al (2012) SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 39:1646–1655CrossRefPubMedGoogle Scholar
  30. 30.
    Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM et al (2013) 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 54:1294–1301CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang M, Fischman A, Nowakowski FS (2012) Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-sphere radioembolization: associations with angiography. J Nucl Med Radiat Ther 3Google Scholar
  32. 32.
    Ricke J (2010) Predictive Value of 99mTc- Albumin Spheres Before 90Y- SIR Therapy (EXPLOSIVE). Available at: NCT01186263 Accessed 19 Dec 2014
  33. 33.
    Selwyn RG, Avila-Rodriguez MA, Converse AK, Hampel JA, Jaskowiak CJ et al (2007) 18F-labeled resin microspheres as surrogates for 90Y resin microspheres used in the treatment of hepatic tumors: a radiolabeling and PET validation study. Phys Med Biol 52:7397–7408CrossRefPubMedGoogle Scholar
  34. 34.
    Avila-Rodriguez MA, Selwyn RG, Hampel JA, Thomadsen BR, Dejesus OT et al (2007) Positron-emitting resin microspheres as surrogates of 90Y SIR-spheres: a radiolabeling and stability study. Nucl Med Biol 34:585–590CrossRefPubMedGoogle Scholar
  35. 35.
    Maziere B, Loc’h C, Steinling M, Comar D (1986) Stable labelling of serum albumin microspheres with gallium-68. Int J Radiat Appl Instrum A 37:360–361CrossRefGoogle Scholar
  36. 36.
    Schiller E, Bergmann R, Pietzsch J, Noll B, Sterger A et al (2008) Yttrium-86-labelled human serum albumin microspheres: relation of surface structure with in vivo stability. Nucl Med Biol 35:227–232CrossRefPubMedGoogle Scholar
  37. 37.
    Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA et al (2012) Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 13:1025–1034CrossRefPubMedGoogle Scholar
  38. 38.
    Elschot M, Smits ML, Nijsen JF, Lam MG, Zonnenberg BA et al (2013) Quantitative Monte Carlo-based holmium-166 SPECT reconstruction. Med Phys 40:112502CrossRefPubMedGoogle Scholar
  39. 39.
    van de Maat GH, Seevinck PR, Elschot M, Smits ML, de Leeuw H et al (2012) MRI-based biodistribution assessment of holmium-166 poly(l-lactic acid) microspheres after radioembolisation. Eur Radiol 23:827–835CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F et al (2010) Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 37:1654–1662CrossRefPubMedGoogle Scholar
  41. 41.
    Kao YH, Tan EH, Teo TK, Ng CE, Goh SW (2011) Imaging discordance between hepatic angiography versus Tc-99m-MAA SPECT/CT: a case series, technical discussion and clinical implications. Ann Nucl Med 25:669–676CrossRefPubMedGoogle Scholar
  42. 42.
    Chang TT, Bourgeois AC, Balius AM, Pasciak AS (2013) Treatment modification of yttrium-90 radioembolization based on quantitative positron emission tomography/CT imaging. J Vasc Interv Radiol 24:333–337CrossRefPubMedGoogle Scholar
  43. 43.
    Lam MG, Louie JD, Iagaru AH, Goris ML, Sze DY (2013) Safety of repeated yttrium-90 radioembolization. Cardiovasc Intervent Radiol 36:1320–1328CrossRefPubMedGoogle Scholar
  44. 44.
    Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA et al (2013) Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS ONE 8:e55742CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Elschot M, Nijsen JF, Dam AJ, de Jong HW (2011) Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS ONE 6:e26174CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Rong X, Du Y, Ljungberg M, Rault E, Vandenberghe S et al (2012) Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Med Phys 39:2346–2358CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Elschot M, Lam MG, van den Bosch MA, Viergever MA, de Jong HW (2013) Quantitative Monte Carlo-based 90Y SPECT reconstruction. J Nucl Med 54:1557–1563CrossRefPubMedGoogle Scholar
  48. 48.
    Ford K (1955) Predicted 0 + level in 40Zr90. Phys Rev 98:1516–1517CrossRefGoogle Scholar
  49. 49.
    Carlier T, Eugene T, Bodet-Milin C, Garin E, Ansquer C et al (2013) Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Res 3:11CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Gupta T, Virmani S, Neidt TM, Szolc-Kowalska B, Sato KT et al (2008) MR tracking of iron-labeled glass radioembolization microspheres during transcatheter delivery to rabbit VX2 liver tumors: feasibility study. Radiology 249:845–854CrossRefPubMedGoogle Scholar
  51. 51.
    Li W, Zhang Z, Guo Y, Nicolai J, Reed A, Larson A (2013) SPIO-labeled 90Y microspheres permit accurate quantification of macroscopic intra-hepatic biodistribution. Paper presented at International Society for Magnetic Resonance in Medicine, Salt Lake City, UTGoogle Scholar
  52. 52.
    Smits ML, Elschot M, van den Bosch MA, van de Maat GH, van Het Schip AD et al (2013) In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med 54:2093–2100CrossRefPubMedGoogle Scholar
  53. 53.
    Seppenwoolde JH, Bartels LW, van der Weide R, Nijsen JF, van het Schip AD et al (2006) Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging 23:123–129CrossRefPubMedGoogle Scholar
  54. 54.
    Kos S, Huegli R, Bongartz GM, Jacob AL, Bilecen D (2008) MR-guided endovascular interventions: a comprehensive review on techniques and applications. Eur Radiol 18:645–657CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2014

Authors and Affiliations

  • Maarten L. J. Smits
    • 1
  • Mattijs Elschot
    • 1
  • Daniel Y. Sze
    • 2
  • Yung H. Kao
    • 3
  • Johannes F. W. Nijsen
    • 1
  • Andre H. Iagaru
    • 4
  • Hugo W. A. M. de Jong
    • 1
  • Maurice A. A. J. van den Bosch
    • 1
  • Marnix G. E. H. Lam
    • 1
  1. 1.Department of Radiology and Nuclear MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Division of Interventional RadiologyStanford University School of MedicineStanfordUSA
  3. 3.Department of Nuclear MedicineAustin HospitalMelbourneAustralia
  4. 4.Division of Nuclear Medicine and Molecular ImagingStanford University School of MedicineStanfordUSA

Personalised recommendations