Advertisement

CardioVascular and Interventional Radiology

, Volume 38, Issue 5, pp 1288–1293 | Cite as

Transarterial Fiducial Marker Placement for Image-guided Proton Therapy for Malignant Liver Tumors

  • Kengo Ohta
  • Masashi Shimohira
  • Shigeru Sasaki
  • Hiromitsu Iwata
  • Hiroko Nishikawa
  • Hiroyuki Ogino
  • Masaki Hara
  • Takuya Hashizume
  • Yuta Shibamoto
Technical Note

Abstract

Purpose

The aim of this study is to analyze the technical and clinical success rates and safety of transarterial fiducial marker placement for image-guided proton therapy for malignant liver tumors.

Methods and Materials

Fifty-five patients underwent this procedure as an interventional treatment. Five patients had 2 tumors, and 4 tumors required 2 markers each, so the total number of procedures was 64. The 60 tumors consisted of 46 hepatocellular carcinomas and 14 liver metastases. Five-mm-long straight microcoils of 0.018 inches in diameter were used as fiducial markers and placed in appropriate positions for each tumor. We assessed the technical and clinical success rates of transarterial fiducial marker placement, as well as the complications associated with it. Technical success was defined as the successful delivery and placement of the fiducial coil, and clinical success was defined as the completion of proton therapy.

Results

All 64 fiducial coils were successfully installed, so the technical success rate was 100 % (64/64). Fifty-four patients underwent proton therapy without coil migration. In one patient, proton therapy was not performed because of obstructive jaundice due to bile duct invasion by hepatocellular carcinoma. Thus, the clinical success rate was 98 % (54/55). Slight bleeding was observed in one case, but it was stopped immediately and then observed. None of the patients developed hepatic infarctions due to fiducial marker migration.

Conclusion

Transarterial fiducial marker placement appears to be a useful and safe procedure for proton therapy for malignant liver tumors.

Keywords

Fiducial marker Transarterial Proton therapy 

Notes

Acknowledgements

This research was not supported by any foundations.

Conflict of Interest

Kengo Ohta, Masashi Shimohira, Shigeru Sasaki, Hiromitsu Iwata, Hiroko Nishikawa, Hiroyuki Ogino, Masaki Hara, Takuya Hashizume, and Yuta Shibamoto have no conflicts of interest.

References

  1. 1.
    Loeffler JS, Smith AR, Suit HD (1997) The potential role of proton beams in radiation oncology. Semin Oncol 24(6):686–695PubMedGoogle Scholar
  2. 2.
    Shibamoto Y (2013) Particle therapy: a suitable alternative to stereotactic body radiotherapy for stage I non-small-cell lung cancer? Lung Cancer Manag 2:353–356CrossRefGoogle Scholar
  3. 3.
    Iwata H, Murakami M, Demizu Y, Miyawaki D, Terashima K, Niwa Y et al (2010) High-dose proton therapy and carbon-ion therapy for stage I non-small cell lung cancer. Cancer 116(10):2476–2485PubMedGoogle Scholar
  4. 4.
    Mendenhall NP, Hoppe BS, Nichols RC, Mendenhall WM, Morris CG, Li Z et al (2014) Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int J Radiat Oncol Biol Phys 88(3):596–602CrossRefPubMedGoogle Scholar
  5. 5.
    Combs SE, Kessel K, Habermehl D, Haberer T, Jäkel O, Debus J (2013) Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base. Acta Oncol 52(7):1504–1509CrossRefPubMedGoogle Scholar
  6. 6.
    Ling TC, Kang JI, Bush DA, Slater JD, Yang GY (2012) Proton therapy for hepatocellular carcinoma. Chin J Cancer Res 24(4):361–367CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hill-Kayser C, Tochner Z, Both S, Lustig R, Reilly A, Balamuth N et al (2013) Proton versus photon radiation therapy for patients with high-risk neuroblastoma: the need for a customized approach. Pediatr Blood Cancer 60(10):1606–1611CrossRefPubMedGoogle Scholar
  8. 8.
    Petersen JB, Lassen Y, Hansen AT, Muren LP, Grau C, Høyer M (2011) Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours. Acta Oncol 50(6):823–828CrossRefPubMedGoogle Scholar
  9. 9.
    Jeong H, Lee SB, Yoo SH, Lim YK, Kim TH, Park S et al (2013) Compensation method for respiratory motion in proton treatment planning for mobile liver cancer. J Appl Clin Med Phys 14(2):4055PubMedGoogle Scholar
  10. 10.
    Kim JH, Hong SS, Kim JH, Park HJ, Chang YW, Chang AR et al (2012) Safety and efficacy of ultrasound-guided fiducial marker implantation for CyberKnife radiation therapy. Korean J Radiol 13(3):307–313CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Trumm CG, Häußler SM, Muacevic A, Stahl R, Stintzing S, Paprottka PM et al (2014) CT fluoroscopy-guided percutaneous fiducial marker placement for CyberKnife stereotactic radiosurgery: technical results and complications in 222 consecutive procedures. J Vasc Interv Radiol 25(5):760–768CrossRefPubMedGoogle Scholar
  12. 12.
    Brook OR, Gourtsoyianni S, Mendiratta-Lala M, Mahadevan A, Siewert B, Sheiman RR (2012) Safety profile and technical success of imaging-guided percutaneous fiducial seed placement with and without core biopsy in the abdomen and pelvis. AJR Am J Roentgenol 198(2):466–470CrossRefPubMedGoogle Scholar
  13. 13.
    Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919CrossRefPubMedGoogle Scholar
  14. 14.
    Ohara K, Okumura T, Akisada M, Inada T, Mori T, Yokota H et al (1989) Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 17(4):853–857CrossRefPubMedGoogle Scholar
  15. 15.
    Tada T, Minakuchi K, Fujioka T, Sakurai M, Koda M, Kawase I et al (1998) Lung cancer: intermittent irradiation synchronized with respiratory motion: results of a pilot study. Radiology 207(3):779–783CrossRefPubMedGoogle Scholar
  16. 16.
    Minohara S, Kanai T, Endo M, Noda K, Kanazawa M (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47(4):1097–1103CrossRefPubMedGoogle Scholar
  17. 17.
    Ohta K, Shimohira M, Iwata H, Hashizume T, Ogino H, Miyakawa A et al (2013) Percutaneous fiducial marker placement under CT fluoroscopic guidance for stereotactic body radiotherapy of the lung: an initial experience. J Radiat Res 54(5):957–961CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weigand K, Weigand K (2009) Percutaneous liver biopsy: retrospective study over 15 years comparing 287 inpatients with 428 outpatients. J Gastroenterol Hepatol 24(5):792–799CrossRefPubMedGoogle Scholar
  19. 19.
    Piccinino F, Sagnelli E, Pasquale G, Giusti G (1986) Complications following percutaneous liver biopsy. A multicenter retrospective study on 68,276 biopsies. J Hepatol 2(2):165–173CrossRefPubMedGoogle Scholar
  20. 20.
    Hennessey H, Valenti D, Cabrera T, Panet-Raymond V, Roberge D (2009) Cardiac embolization of an implanted fiducial marker for hepatic stereotactic body radiotherapy: a case report. J Med Case Rep 20(3):140CrossRefGoogle Scholar
  21. 21.
    Shirato H, Harada T, Harabayashi T, Hida K, Endo H, Kitamura K et al (2003) Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys 56(1):240–247CrossRefPubMedGoogle Scholar
  22. 22.
    Prévost JBI, Nuyttens JJ, Hoogeman MS, Pöll JJ, van Dijk LC, Pattynama PM (2008) Endovascular coils as lung tumour markers in real-time tumour tracking stereotactic radiotherapy: preliminary results. Eur Radiol 18(8):1569–1576CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Patel A, Khalsa B, Lord B, Sandrasegaran K, Lall C (2013) Planting the seeds of success: CT-guided gold seed fiducial marker placement to guide robotic radiosurgery. J Med Imaging Radiat Oncol 57(2):207–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2014

Authors and Affiliations

  • Kengo Ohta
    • 1
  • Masashi Shimohira
    • 1
  • Shigeru Sasaki
    • 2
  • Hiromitsu Iwata
    • 2
  • Hiroko Nishikawa
    • 2
  • Hiroyuki Ogino
    • 2
  • Masaki Hara
    • 2
  • Takuya Hashizume
    • 1
  • Yuta Shibamoto
    • 1
  1. 1.Department of RadiologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
  2. 2.Department of Radiation Oncology, Nagoya Proton Therapy CenterNagoya City West Medical CenterNagoyaJapan

Personalised recommendations