CardioVascular and Interventional Radiology

, Volume 38, Issue 2, pp 372–380 | Cite as

Predisposing Factors of Liver Necrosis after Transcatheter Arterial Chemoembolization in Liver Metastases from Neuroendocrine Tumor

  • Julien Joskin
  • Thierry de Baere
  • Anne Auperin
  • Lambros Tselikas
  • Boris Guiu
  • Geoffroy Farouil
  • Valérie Boige
  • David Malka
  • Sophie Leboulleux
  • Michel Ducreux
  • Eric Baudin
  • Frédéric Deschamps
Clinical Investigation



To investigate predictive factors for liver necrosis after transcatheter arterial chemoembolization (TACE) of neuroendocrine liver metastases.


A total of 164 patients receiving 374 TACE were reviewed retrospectively to analyze predictive factors of liver necrosis. We analyzed patient age and sex; metastasis number and location; percentage of liver involvement; baseline liver function test; and pretreatment imaging abnormalities such as bile duct dilatation (BDD), portal vein narrowing (PVN), and portal vein thrombosis (PVT). We analyzed TACE technique such as Lipiodol or drug-eluting beads (DEB) as the drug’s vector; dose of chemotherapy; diameter of DEB; and number, frequency, and selectivity of TACE.


Liver necrosis developed after 23 (6.1 %) of 374 TACE. In multivariate analysis, DEB > 300 μm in size induced more liver necrosis compared to Lipiodol (odds ratio [OR] 35.20; p < 0.0001) or with DEB < 300 μm in size (OR 19.95; p < 0.010). Pretreatment BDD (OR 119.64; p < 0.0001) and PVT (OR 9.83; p = 0.030) were predictive of liver necrosis. BDD or PVT responsible for liver necrosis were present before TACE in 59 % (13 of 22) and were induced by a previous TACE in 41 % (9 of 22) of cases.


DEB > 300 μm in size, BDD, and PVT are responsible for increased rate of liver necrosis after TACE. Careful analysis of BDD or PVT on pretreatment images as well as images taken between two courses can help avoid TACE complications.


Interventional oncology Chemoembolization Liver/Hepatic Cancer 


Conflict of interest

Julien Joskin, Thierry de Baere, Anne Auperin, Lambros Tselikas, Boris Guiu, Geoffroy Farouil, Valérie Boige, David Malka, Sophie Leboulleux, Michel Ducreux, Eric Baudin, and Frédéric Deschamps declare that they have no conflict of interest.


  1. 1.
    Niederle MB, Hackl M, Kaserer K, Niederle B (2010) Gastroenteropancreatic neuroendocrine tumours: the current incidence and staging based on the WHO and European Neuroendocrine Tumour Society classification: an analysis based on prospectively collected parameters. Endocr Relat Cancer 17:909–918CrossRefPubMedGoogle Scholar
  2. 2.
    Yao JC, Hassan M, Phan A, Dagohoy C et al (2008) One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 26:3063–3072CrossRefPubMedGoogle Scholar
  3. 3.
    Chamberlain RS, Canes D, Brown KT et al (2000) Hepatic neuroendocrine metastases: does intervention alter outcomes? J Am Coll Surg 190:432–445CrossRefPubMedGoogle Scholar
  4. 4.
    Modlin IM, Lye KD, Kidd M (2003) A 5-decade analysis of 13,715 carcinoid tumors. Cancer 97:934–959CrossRefPubMedGoogle Scholar
  5. 5.
    Mayo SC, de Jong MC, Bloomston M et al (2011) Surgery versus intra-arterial therapy for neuroendocrine liver metastasis: a multicenter international analysis. Ann Surg Oncol 18:3657–3665CrossRefPubMedGoogle Scholar
  6. 6.
    de Baere T, Dufaux J, Roche A et al (1995) Circulatory alterations induced by intra-arterial injection of iodized oil and emulsions of iodized oil and doxorubicin: experimental study. Radiology 194:165–170CrossRefPubMedGoogle Scholar
  7. 7.
    Gupta S, Johnson MM, Murthy R et al (2005) Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 104:1590–1602CrossRefPubMedGoogle Scholar
  8. 8.
    de Baere T, Zhang X, Aubert B et al (1996) Quantification of tumor uptake of iodized oils and emulsions of iodized oils: experimental study. Radiology 201:731–735CrossRefPubMedGoogle Scholar
  9. 9.
    Hong K, Khwaja A, Liapi E et al (2006) New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res 12:2563–2567CrossRefPubMedGoogle Scholar
  10. 10.
    Rao PP, Pascale F, Seck A et al (2012) Irinotecan loaded in eluting beads: preclinical assessment in a rabbit VX2 liver tumor model. Cardiovasc Interv Radiol 35:1448–1459CrossRefGoogle Scholar
  11. 11.
    Bhagat N, Reyes DK, Lin M et al (2013) Phase II study of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury. Cardiovasc Interv Radiol 36:449–459CrossRefGoogle Scholar
  12. 12.
    Chung JW, Park JH, Han JK et al (1996) Hepatic tumors: predisposing factors for complications of transcatheter oily chemoembolization. Radiology 198:33–40CrossRefPubMedGoogle Scholar
  13. 13.
    de Baere T, Deschamps F, Teriitheau C et al (2008) Transarterial chemoembolization of liver metastases from well differentiated gastroenteropancreatic endocrine tumors with doxorubicin-eluting beads: preliminary results. J Vasc Interv Radiol 19:855–861CrossRefPubMedGoogle Scholar
  14. 14.
    Gaur SK, Friese JL, Sadow CA et al (2011) Hepatic arterial chemoembolization using drug-eluting beads in gastrointestinal neuroendocrine tumor metastatic to the liver. Cardiovasc Interv Radiol 34:566–572CrossRefGoogle Scholar
  15. 15.
    Guiu B, Deschamps F, Aho S et al (2012) Liver/biliary injuries following chemoembolisation of endocrine tumours and hepatocellular carcinoma: lipiodol vs drug-eluting beads. J Hepatol 56:609–617CrossRefPubMedGoogle Scholar
  16. 16.
    Makuuchi M, Sukigara M, Mori T et al (1985) Bile duct necrosis: complication of transcatheter hepatic arterial embolization. Radiology 156:331–334CrossRefPubMedGoogle Scholar
  17. 17.
    Sakamoto I, Iwanaga S, Nagaoki K et al (2003) Intrahepatic biloma formation (bile duct necrosis) after transcatheter arterial chemoembolization. AJR Am J Roentgenol 181:79–87CrossRefPubMedGoogle Scholar
  18. 18.
    Klimstra DS, Modlin IR, Coppola D et al (2010) The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 39:707–712CrossRefPubMedGoogle Scholar
  19. 19.
    Yu JS, Kim KW, Jeong MG et al (2002) Predisposing factors of bile duct injury after transcatheter arterial chemoembolization (TACE) for hepatic malignancy. Cardiovasc Interv Radiol 25:270–274CrossRefGoogle Scholar
  20. 20.
    Yu JS, Kim KW, Park MS, Yoon SW (2001) Bile duct injuries leading to portal vein obliteration after transcatheter arterial chemoembolization in the liver: CT findings and initial observations. Radiology 221:429–436CrossRefPubMedGoogle Scholar
  21. 21.
    Demachi H, Matsui O, Kawamori Y et al (1995) The protective effect of portoarterial shunts after experimental hepatic artery embolization in rats with liver cirrhosis. Cardiovasc Interv Radiol 18:97–101CrossRefGoogle Scholar
  22. 22.
    Aronsen KF, Nylander G, Ohlsson EG (1969) Liver blood flow studies during and after various periods of total biliary obstruction in the dog. Acta Chir Scand 135:55–59PubMedGoogle Scholar
  23. 23.
    Bergan A, Enge I, Hall C (1974) Angiographic studies in experimental total and lobar cholestasis in dogs. Invest Radiol 9:462–472CrossRefPubMedGoogle Scholar
  24. 24.
    Doppman JL, Girton M, Vermess M (1982) The risk of hepatic artery embolization in the presence of obstructive jaundice. Radiology 143:37–43CrossRefPubMedGoogle Scholar
  25. 25.
    Kock NG, Hahnloser P, Roding B, Schenk WG Jr (1972) Interaction between portal venous and hepatic arterial blood flow: an experimental study in the dog. Surgery 72:414–419PubMedGoogle Scholar
  26. 26.
    Ohlsson EG, Rutherford RB, Boitnott JK et al (1970) Changes in portal circulation after biliary obstruction in dogs. Am J Surg 120:16–22CrossRefPubMedGoogle Scholar
  27. 27.
    Ohlsson EG, Rutherford RB, Haalebos MM et al (1970) The effect of biliary obstruction on hepatosplanchnic blood flow in dogs. J Surg Res 10:201–208CrossRefPubMedGoogle Scholar
  28. 28.
    Reuter SR, Chuang VP (1976) The location of increased resistance to portal blood flow in obstructive jaundice. Invest Radiol 11:54–59CrossRefPubMedGoogle Scholar
  29. 29.
    Sonomura T, Yamada R, Kishi K et al (1997) Dependency of tissue necrosis on gelatin sponge particle size after canine hepatic artery embolization. Cardiovasc Interv Radiol 20:50–53CrossRefGoogle Scholar
  30. 30.
    Brown KT, Koh BY, Brody LA et al (1999) Particle embolization of hepatic neuroendocrine metastases for control of pain and hormonal symptoms. J Vasc Interv Radiol 10:397–403CrossRefPubMedGoogle Scholar
  31. 31.
    Laurent A, Wassef M, Chapot R et al (2004) Location of vessel occlusion of calibrated tris-acryl gelatin microspheres for tumor and arteriovenous malformation embolization. J Vasc Interv Radiol 15:491–496CrossRefPubMedGoogle Scholar
  32. 32.
    Lee KH, Liapi E, Vossen JA, Buijs M et al (2008) Distribution of iron oxide–containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy. J Vasc Interv Radiol 19:1490–1496CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Namur J, Citron SJ, Sellers MT et al (2011) Embolization of hepatocellular carcinoma with drug-eluting beads: doxorubicin tissue concentration and distribution in patient liver explants. J Hepatol 55:1332–1338CrossRefPubMedGoogle Scholar
  34. 34.
    Lewis AL, Gonzalez MV, Leppard SW et al (2007) Doxorubicin eluting beads—1: effects of drug loading on bead characteristics and drug distribution. J Mater Sci Mater Med 18:1691–1699CrossRefPubMedGoogle Scholar
  35. 35.
    Lewis AL, Gonzalez MV, Lloyd AW et al (2006) DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 17(2 pt 1):335–342CrossRefPubMedGoogle Scholar
  36. 36.
    Lewis AL, Taylor RR, Hall B et al (2006) Pharmacokinetic and safety study of doxorubicin-eluting beads in a porcine model of hepatic arterial embolization. J Vasc Interv Radiol 17:1335–1343CrossRefPubMedGoogle Scholar
  37. 37.
    Nicolini A, Martinetti L, Crespi S et al (2010) Transarterial chemoembolization with epirubicin-eluting beads versus transarterial embolization before liver transplantation for hepatocellular carcinoma. J Vasc Interv Radiol 21:327–332CrossRefPubMedGoogle Scholar
  38. 38.
    Poon RT, Tso WK, Pang RW et al (2007) A phase I/II trial of chemoembolization for hepatocellular carcinoma using a novel intra-arterial drug-eluting bead. Clin Gasteroenterol Hepatol 5:1100–1108CrossRefGoogle Scholar
  39. 39.
    Varela M, Real MI, Burrel M et al (2007) Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 46:474–481CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2014

Authors and Affiliations

  • Julien Joskin
    • 1
  • Thierry de Baere
    • 1
  • Anne Auperin
    • 2
  • Lambros Tselikas
    • 1
  • Boris Guiu
    • 1
  • Geoffroy Farouil
    • 1
  • Valérie Boige
    • 3
  • David Malka
    • 3
  • Sophie Leboulleux
    • 4
  • Michel Ducreux
    • 3
  • Eric Baudin
    • 4
  • Frédéric Deschamps
    • 1
  1. 1.Department of Interventional RadiologyInstitut Gustave RoussyVillejuifFrance
  2. 2.Department of EpidemiologyInstitut Gustave RoussyVillejuifFrance
  3. 3.Department of Digestive OncologyInstitut Gustave RoussyVillejuifFrance
  4. 4.Department of Nuclear Medicine and Endocrine OncologyInstitut Gustave RoussyVillejuifFrance

Personalised recommendations