CardioVascular and Interventional Radiology

, Volume 37, Issue 6, pp 1589–1596 | Cite as

MR-Guided Vertebroplasty With Augmented Reality Image Overlay Navigation

  • Jan FritzEmail author
  • Paweena U-Thainual
  • Tamas Ungi
  • Aaron J. Flammang
  • Sudhir Kathuria
  • Gabor Fichtinger
  • Iulian I. Iordachita
  • John A. Carrino
Laboratory Investigation



To evaluate the feasibility of magnetic resonance imaging (MRI)-guided vertebroplasty at 1.5 Tesla using augmented reality image overlay navigation.

Materials and Methods

Twenty-five unilateral vertebroplasties [5 of 25 (20 %) thoracic, 20 of 25 (80 %) lumbar] were prospectively planned in 5 human cadavers. A clinical 1.5-Teslan MRI system was used. An augmented reality image overlay navigation system and 3D Slicer visualization software were used for MRI display, planning, and needle navigation. Intermittent MRI was used to monitor placement of the MRI-compatible vertebroplasty needle. Cement injections (3 ml of polymethylmethacrylate) were performed outside the bore. The cement deposits were assessed on intermediate-weighted MR images. Outcome variables included type of vertebral body access, number of required intermittent MRI control steps, location of final needle tip position, cement deposit location, and vertebroplasty time.


All planned procedures (25 of 25, 100 %) were performed. Sixteen of 25 (64 %) transpedicular and 9 of 25 (36 %) parapedicular access routes were used. Six (range 3–9) MRI control steps were required for needle placement. No inadvertent punctures were visualized. Final needle tip position and cement location were adequate in all cases (25 of 25, 100 %) with a target error of the final needle tip position of 6.1 ± 1.9 mm (range 0.3–8.7 mm) and a distance between the planned needle tip position and the center of the cement deposit of 4.3 mm (range 0.8–6.8 mm). Time requirement for one level was 16 (range 11–21) min.


MRI-guided vertebroplasty using image overlay navigation is feasible allowing for accurate vertebral body access and cement deposition in cadaveric thoracic and lumbar vertebral bodies.


Vertebroplasty Interventional MR imaging MR imaging guidance MR-guided 



National Cancer Institute, 1 R01 CA118371-01A2-Image Overlay for MRI-Guided Needle Insertions. Cancer Care Ontario Research Chair in Cancer Imaging (Gabor Fichtinger). NSERC CREATE in Human Mobility (Paweena U-Thainual). Ontario Ministry of Innovation postdoctoral fellowship (Tamas Ungi). Somatex Medical Technologies GmbH, Teltow, Germany, supported this study by providing the MRI-compatible vertebroplasty needles and cement.

Conflict of interest

Jan Fritz, Paweena U-Thaiual, Tamas Ungi, Aaron J. Flammang, Sudhir Kathuria, Gabor Fichtinger, Iulian I. Iordachita, and John A. Carrino received grants from the National Cancer Institute, 1 R01 CA118371-01A2-Image Overlay for MRI-Guided Needle Insertions, as well as nonfinancial support from Somatex Medical Technologies GmbH, Teltow, Germany, during the conduct of the study. Jan Fritz, Gabor Fichtinger, and Sudhir Kathuria received grants and nonfinancial support from Siemens AG outside the submitted work. Paweena U-Thainual received grants from NSERC CREATE in Human Mobility during the conduct of the study. Tamas Ungi received grants and personal fees from Ontario Ministry of Innovation postdoctoral fellowship during the conduct of the study. Gabor Fichtinger received grants from Cancer Care Ontario Research Chair in Cancer Imaging during the conduct of the study. John Carrino received grants from Toshiba and Carestream, as well as personal fees from General Electric, Siemens, and BioClinica, outside the submitted work.


  1. 1.
    Anselmetti GC, Manca A, Montemurro F et al (2012) Percutaneous vertebroplasty in multiple myeloma: prospective long-term follow-up in 106 consecutive patients. Cardiovasc Intervent Radiol 35(1):139–145PubMedCrossRefGoogle Scholar
  2. 2.
    Masala S, Pipitone V, Tomassini M, Massari F, Romagnoli A, Simonetti G (2006) Percutaneous vertebroplasty in painful Schmorl nodes. Cardiovasc Intervent Radiol 29(1):97–101PubMedCrossRefGoogle Scholar
  3. 3.
    Anselmetti GC, Corrao G, Monica PD et al (2007) Pain relief following percutaneous vertebroplasty: results of a series of 283 consecutive patients treated in a single institution. Cardiovasc Intervent Radiol 30(3):441–447PubMedCrossRefGoogle Scholar
  4. 4.
    Gangi A, Clark WA (2010) Have recent vertebroplasty trials changed the indications for vertebroplasty? Cardiovasc Intervent Radiol 33(4):677–680PubMedCrossRefGoogle Scholar
  5. 5.
    Gangi A, Sabharwal T, Irani FG, Buy X, Morales JP, Adam A (2006) Quality assurance guidelines for percutaneous vertebroplasty. Cardiovasc Intervent Radiol 29(2):173–178PubMedCrossRefGoogle Scholar
  6. 6.
    Orgera G, Krokidis M, Matteoli M et al (2013) Percutaneous vertebroplasty for pain management in patients with multiple myeloma: is radiofrequency ablation necessary? Cardiovasc Intervent Radiol 37(1):203–210PubMedCrossRefGoogle Scholar
  7. 7.
    Gronemeyer DH, Schirp S, Gevargez A (2002) Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode. Cancer J 8(1):33–39PubMedCrossRefGoogle Scholar
  8. 8.
    Schaefer O, Lohrmann C, Markmiller M, Uhrmeister P, Langer M (2003) Technical innovation. Combined treatment of a spinal metastasis with radiofrequency heat ablation and vertebroplasty. AJR Am J Roentgenol 180(4):1075–1077PubMedCrossRefGoogle Scholar
  9. 9.
    Kelekis A, Filippiadis DK, Martin JB, Kelekis NL (2013) Aggressive vertebral hemangioma treated with combination of vertebroplasty and sclerotherapy through transpedicular and direct approach. Cardiovasc Intervent Radiol [Epub ahead of print]Google Scholar
  10. 10.
    Masala S, Roselli M, Manenti G, Mammucari M, Bartolucci DA, Simonetti G (2008) Percutaneous cryoablation and vertebroplasty: a case report. Cardiovasc Intervent Radiol 31(3):669–672PubMedCrossRefGoogle Scholar
  11. 11.
    Amoretti N, Lesbats V, Marcy PY et al (2010) Dual guidance (CT and fluoroscopy) vertebroplasty: radiation dose to radiologists. How much and where? Skeletal Radiol 39(12):1229–1235PubMedCrossRefGoogle Scholar
  12. 12.
    Braak SJ, Zuurmond K, Aerts HC et al (2013) Feasibility study of needle placement in percutaneous vertebroplasty: cone-beam computed tomography guidance versus conventional fluoroscopy. Cardiovasc Intervent Radiol 36(4):1120–1126PubMedCrossRefGoogle Scholar
  13. 13.
    Gangi A, Kastler BA, Dietemann JL (1994) Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. AJNR Am J Neuroradiol 15(1):83–86PubMedGoogle Scholar
  14. 14.
    Perisinakis K, Damilakis J, Theocharopoulos N, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N (2004) Patient exposure and associated radiation risks from fluoroscopically guided vertebroplasty or kyphoplasty. Radiology 232(3):701–707PubMedCrossRefGoogle Scholar
  15. 15.
    Joemai RM, Zweers D, Obermann WR, Geleijns J (2009) Assessment of patient and occupational dose in established and new applications of MDCT fluoroscopy. AJR Am J Roentgenol 192(4):881–886PubMedCrossRefGoogle Scholar
  16. 16.
    Fritz J, Tzaribachev N, Thomas C et al (2012) Magnetic resonance imaging-guided osseous biopsy in children with chronic recurrent multifocal osteomyelitis. Cardiovasc Intervent Radiol 35(1):146–153PubMedCrossRefGoogle Scholar
  17. 17.
    Maurer MH, Disch AC, Hartwig T, et al (2013) Outcome study of real-time MR-guided cervical periradicular injection therapy in an open 1.0 Tesla MRI system. Cardiovasc Intervent Radiol [Epub ahead of print]Google Scholar
  18. 18.
    Streitparth F, Gebauer B, Melcher I et al (2009) MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc Intervent Radiol 32(2):320–325PubMedCrossRefGoogle Scholar
  19. 19.
    Akural E, Ojala RO, Jarvimaki V, Kariniemi J, Tervonen OA, Blanco SR (2013) MR-guided neurolytic celiac plexus ablation: an evaluation of effect and injection spread pattern in cancer patients with celiac tumor infiltration. Cardiovasc Intervent Radiol 36(2):472–478PubMedCrossRefGoogle Scholar
  20. 20.
    Fritz J, Henes JC, Thomas C et al (2008) Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol 191(6):1717–1724PubMedCrossRefGoogle Scholar
  21. 21.
    Fritz J, Thomas C, Tzaribachev N et al (2009) MRI-guided injection procedures of the temporomandibular joints in children and adults: technique, accuracy, and safety. AJR Am J Roentgenol 193(4):1148–1154PubMedCrossRefGoogle Scholar
  22. 22.
    Binkert CA, Nanz D, Bootz F et al (2002) Laser-induced thermotherapy of the vertebral body: preliminary assessment of safety and real-time magnetic resonance monitoring in an animal model. Invest Radiol 37(10):557–561PubMedCrossRefGoogle Scholar
  23. 23.
    Streitparth F, Walter T, Wonneberger U, et al. (2013) MR guidance and thermometry of percutaneous laser disc decompression in open MRI: An ex vivo study. Cardiovasc Intervent Radiol [Epub ahead of print]Google Scholar
  24. 24.
    Fritz J, Thainual P, Ungi T et al (2013) Augmented reality visualization using image overlay technology for MR-guided interventions: cadaveric bone biopsy at 1.5 T. Invest Radiol 48(6):464–470PubMedCrossRefGoogle Scholar
  25. 25.
    U-Thainual P, Fritz J, Moonjaita C et al (2012) MR image overlay guidance: system evaluation for preclinical use. Int J Comput Assist Radiol Surg 8(3):365–378PubMedCrossRefGoogle Scholar
  26. 26.
    Kikinis R, Pieper S (2011) 3D Slicer as a tool for interactive brain tumor segmentation. Conf Proc IEEE Eng Med Biol Soc 1:6982–6984Google Scholar
  27. 27.
    Vikal S, Thainual P, Carrino JA, Iordachita I, Fischer GS, Fichtinger G (2010) Perk Station—Percutaneous surgery training and performance measurement platform. Comput Med Imaging Graph 34(1):19–32PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Fritz J, Thainual P, Ungi T et al (2012) Augmented reality visualization with use of image overlay technology for MR imaging-guided interventions: assessment of performance in cadaveric shoulder and hip arthrography at 1.5 T. Radiology 265(1):254–259PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Obesity: preventing and managing the global epidemic Report of a WHO consultation (2000) World Health Organ Tech Rep Ser 894(i–xii):1–253Google Scholar
  30. 30.
    Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20(2):395–403PubMedCrossRefGoogle Scholar
  31. 31.
    Fritz J, Thainual P, Ungi T et al (2012) Augmented reality visualisation using an image overlay system for MR-guided interventions: technical performance of spine injection procedures in human cadavers at 1.5 Tesla. Eur Radiol 23(1):235–245PubMedCrossRefGoogle Scholar
  32. 32.
    Blanco SR, Klemola R, Ojala R et al (2002) MRI-guided trephine biopsy and fine-needle aspiration in the diagnosis of bone lesions in low-field (0.23 T) MRI system using optical instrument tracking. Eur Radiol 12(4):830–835CrossRefGoogle Scholar
  33. 33.
    Blanco SR, Carrino JA (2005) Musculoskeletal interventional MR imaging. Magn Reson Imaging Clin North Am 13(3):519–532CrossRefGoogle Scholar
  34. 34.
    Carrino JA, Blanco R (2006) Magnetic resonance–guided musculoskeletal interventional radiology. Semin Musculoskelet Radiol 10(2):159–174PubMedCrossRefGoogle Scholar
  35. 35.
    Carrino JA, Khurana B, Ready JE, Silverman SG, Winalski CS (2007) Magnetic resonance imaging-guided percutaneous biopsy of musculoskeletal lesions. J Bone Joint Surg Am 89(10):2179–2187PubMedCrossRefGoogle Scholar
  36. 36.
    Genant JW, Vandevenne JE, Bergman AG et al (2002) Interventional musculoskeletal procedures performed by using MR imaging guidance with a vertically open MR unit: assessment of techniques and applicability. Radiology 223(1):127–136PubMedCrossRefGoogle Scholar
  37. 37.
    Koenig CW, Duda SH, Truebenbach J et al (2001) MR-guided biopsy of musculoskeletal lesions in a low-field system. J Magn Reson Imaging 13(5):761–768PubMedCrossRefGoogle Scholar
  38. 38.
    Lewin JS, Petersilge CA, Hatem SF et al (1998) Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol 170(6):1593–1601PubMedCrossRefGoogle Scholar
  39. 39.
    Ojala R, Sequeiros RB, Klemola R, Vahala E, Jyrkinen L, Tervonen O (2002) MR-guided bone biopsy: preliminary report of a new guiding method. J Magn Reson Imaging 15(1):82–86PubMedCrossRefGoogle Scholar
  40. 40.
    Parkkola RK, Mattila KT, Heikkila JT et al (2001) Dynamic contrast-enhanced MR imaging and MR-guided bone biopsy on a 0.23 T open imager. Skeletal Radiol 30(11):620–624PubMedCrossRefGoogle Scholar
  41. 41.
    Smith KA, Carrino J (2008) MRI-guided interventions of the musculoskeletal system. J Magn Reson Imaging 27(2):339–346PubMedCrossRefGoogle Scholar
  42. 42.
    Weiss CR, Nour SG, Lewin JS (2008) MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging 27(2):311–325PubMedCrossRefGoogle Scholar
  43. 43.
    Kerimaa P, Marttila A, Hyvonen P et al (2013) MRI-guided biopsy and fine needle aspiration biopsy (FNAB) in the diagnosis of musculoskeletal lesions. Eur J Radiol 82(12):2328–2333PubMedCrossRefGoogle Scholar
  44. 44.
    Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL (2009) Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 192(4):W161–W167PubMedCrossRefGoogle Scholar
  45. 45.
    Seimenis I, Tsekos NV, Keroglou C, Eracleous E, Pitris C, Christoforou EG (2012) An approach for preoperative planning and performance of MR-guided interventions demonstrated with a manual manipulator in a 1.5 T MRI scanner. Cardiovasc Intervent Radiol 35(2):359–367PubMedCrossRefGoogle Scholar
  46. 46.
    Rothgang E, Gilson WD, Wacker F, Hornegger J, Lorenz CH, Weiss CR (2013) Rapid freehand MR-guided percutaneous needle interventions: an image-based approach to improve workflow and feasibility. J Magn Reson Imaging 37(5):1202–1212PubMedCrossRefGoogle Scholar
  47. 47.
    Fritz J, Thainual P, Ungi T et al (2012) Augmented reality visualization with image overlay for MRI-guided intervention: accuracy for lumbar spinal procedures with a 1.5-T MRI system. AJR Am J Roentgenol 198(3):W266–W273PubMedCrossRefGoogle Scholar
  48. 48.
    Baumann C, Fuchs H, Kiwit J, Westphalen K, Hierholzer J (2007) Complications in percutaneous vertebroplasty associated with puncture or cement leakage. Cardiovasc Intervent Radiol 30(2):161–168PubMedCrossRefGoogle Scholar
  49. 49.
    Wichlas F, Seebauer CJ, Schilling R et al (2012) A signal-inducing bone cement for magnetic resonance imaging-guided spinal surgery based on hydroxyapatite and polymethylmethacrylate. Cardiovasc Intervent Radiol 35(3):661–667PubMedCrossRefGoogle Scholar
  50. 50.
    Nour SG, Aschoff AJ, Mitchell IC, Emancipator SN, Duerk JL, Lewin JS (2002) MR imaging-guided radio-frequency thermal ablation of the lumbar vertebrae in porcine models. Radiology 224(2):452–462PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2014

Authors and Affiliations

  • Jan Fritz
    • 1
    Email author
  • Paweena U-Thainual
    • 2
    • 3
    • 5
  • Tamas Ungi
    • 3
  • Aaron J. Flammang
    • 4
  • Sudhir Kathuria
    • 1
  • Gabor Fichtinger
    • 3
  • Iulian I. Iordachita
    • 2
  • John A. Carrino
    • 1
  1. 1.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Mechanical Engineering and Laboratory for Computational Sensing and RoboticsThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.School of ComputingQueen’s UniversityKingstonCanada
  4. 4.Siemens Healthcare USA, Inc.MalvernUSA
  5. 5.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations