CardioVascular and Interventional Radiology

, Volume 37, Issue 3, pp 777–783 | Cite as

MR Guidance and Thermometry of Percutaneous Laser Disc Decompression in Open MRI: An Ex Vivo Study

  • Florian Streitparth
  • Thula Walter
  • Uta Wonneberger
  • Bernhard Schnackenburg
  • Carsten M. Philipp
  • Federico Collettini
  • Ulf K. M. Teichgräber
  • Bernhard Gebauer
Laboratory Investigation



To assess the feasibility of guidance and thermometry by open 1.0 T magnetic resonance (MR) imaging during percutaneous laser disc decompression (PLDD).


A fluoroscopic proton-density-weighted turbo spin echo sequence was used for positioning a laser fiber and a reference thermosensor within the targeted spinal disc. In 30 lumbar discs from human donors, nonspoiled gradient-echo (GRE) sequences with different echo times (TE) were compared to monitor thermal laser effects (Nd:YAG laser, 1,064 nm). Temperature distribution was visualized in real time on the basis of T1-weighted images and the proton resonance frequency (PRF) technique. Image quality, temperature accuracy, and correlation with macroscopic lesion sizes were analyzed. Image quality was confirmed in healthy volunteers.


MR-guided placement of the laser fiber in the center of the targeted disk was precise. Best overall PLDD results—considering image quality (contrast-to-noise ratio), temperature accuracy (R 2 = 0.96), and correlation between the macroscopic and MR lesions (R 2 = 0.63)—were achieved with TE at 7 ms. The same TE value also gave the best image quality with healthy volunteers.


Instrument guidance and PRF-based thermometry of PLDD in the lumbar spine are feasible and accurate. Open 1.0 T MR imaging with fast spin-echo and GRE sequence designs may render laser discectomies more effective and controllable.


Experimental IR Nonvascular interventions Ablation Skeletal intervention Laser treatment Spine/nervous system Pain 



We thank Virginia Ding-Reinelt and Andreas Thomas for expert MRI technical assistance. This work was supported in part by grants from the Technologiestiftung Berlin—Zukunftsfonds Berlin (TSB) and the EUs European Fund for Regional Development (Grant 10132816/10134231).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585PubMedCrossRefGoogle Scholar
  2. 2.
    Manchikanti L, Boswell MV, Singh V et al (2009) Comprehensive evidence-based guidelines for interventional techniques in the management of chronic spinal pain. Pain Physician 12:699–802PubMedGoogle Scholar
  3. 3.
    Kelekis AD, Filippiadis DK, Martin JB, Brountzos E (2010) Standards of practice: quality assurance guidelines for percutaneous treatments of intervertebral discs. Cardiovasc Intervent Radiol 33:909–913PubMedCrossRefGoogle Scholar
  4. 4.
    Choy DS, Case RB, Fielding W et al (1987) Percutaneous laser nucleolysis of lumbar disks. N Engl J Med 317:771–772PubMedCrossRefGoogle Scholar
  5. 5.
    Black W, Fejos AS, Choy DS (2004) Percutaneous laser disc decompression in the treatment of discogenic back pain. Photomed Laser Surg 22:431PubMedCrossRefGoogle Scholar
  6. 6.
    Choy DS (2004) Percutaneous laser disc decompression: a 17-year experience. Photomed Laser Surg 22:407PubMedCrossRefGoogle Scholar
  7. 7.
    Gibson JN, Waddell G (2007) Surgical interventions for lumbar disc prolapse: updated Cochrane review. Spine 32:1735–1747PubMedCrossRefGoogle Scholar
  8. 8.
    Goupille P, Mulleman D, Mammou S et al (2007) Percutaneous laser disc decompression for the treatment of lumbar disc herniation: a review. Semin Arthritis Rheum 37:20–30PubMedCrossRefGoogle Scholar
  9. 9.
    Gupta AK, Bodhey NK, Jayasree RS et al (2006) Percutaneous laser disc decompression: clinical experience at SCTIMST and long term follow up. Neurol India 54:164PubMedGoogle Scholar
  10. 10.
    Menchetti PP, Canero G, Bini W (2011) Percutaneous laser discectomy: experience and long term follow-up. Acta Neurochir Suppl 108:117–121PubMedCrossRefGoogle Scholar
  11. 11.
    Tassi GP (2006) Comparison of results of 500 microdiscectomies and 500 percutaneous laser disc decompression procedures for lumbar disc herniation. Photomed Laser Surg 24:694–697PubMedCrossRefGoogle Scholar
  12. 12.
    Streitparth F, Gebauer B, Melcher I et al (2009) MR-guided laser ablation of osteoid osteoma in an open high-field system (1.0 T). Cardiovasc Intervent Radiol 32:320–325PubMedCrossRefGoogle Scholar
  13. 13.
    Streitparth F, Knobloch G, Balmert D et al (2010) Laser-induced thermotherapy (LITT)-evaluation of a miniaturised applicator and implementation in a 1.0-T high-field open MRI applying a porcine liver model. Eur Radiol 20:2671–2678PubMedCrossRefGoogle Scholar
  14. 14.
    Fritz J, Thomas C, Clasen S et al (2009) Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 192:W161–W167PubMedCrossRefGoogle Scholar
  15. 15.
    Rump JC, Streitparth F, Boning G et al (2011) Evaluation of a MR-quadrupole imaging coil for spinal interventions in a vertical 1.0 T MRI. Magn Reson Med 68:600–605PubMedCrossRefGoogle Scholar
  16. 16.
    Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20:395–403PubMedCrossRefGoogle Scholar
  17. 17.
    Sequeiros RB, Klemola R, Ojala R et al (2003) Percutaneous MR-guided discography in a low-field system using optical instrument tracking: a feasibility study. J Magn Reson Imaging 17:214–219PubMedCrossRefGoogle Scholar
  18. 18.
    Streitparth F, Hartwig T, Schnackenburg B et al (2011) MR-guided discography using an open 1 Tesla MRI system. Eur Radiol 21:1043–1049PubMedCrossRefGoogle Scholar
  19. 19.
    Schoenenberger AW, Steiner P, Debatin JF et al (1997) Real-time monitoring of laser discectomies with a superconducting, open-configuration MR system. AJR Am J Roentgenol 169:863–867PubMedCrossRefGoogle Scholar
  20. 20.
    Steiner P, Zweifel K, Botnar R et al (1998) MR guidance of laser disc decompression: preliminary in vivo experience. Eur Radiol 8:592–597PubMedCrossRefGoogle Scholar
  21. 21.
    Wonneberger U, Schnackenburg B, Wlodarczyk W et al (2010) Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner. Int J Hyperthermia 26:295–304PubMedCrossRefGoogle Scholar
  22. 22.
    Wonneberger U, Schnackenburg B, Wlodarczyk W et al (2010) Intradiscal temperature monitoring using double gradient-echo pulse sequences at 1.0 T. J Magn Reson Imaging 31:1499–1503PubMedCrossRefGoogle Scholar
  23. 23.
    Streitparth F, Hartwig T, Walter T et al (2013) MR guidance and thermometry of percutaneous laser disc decompression in open MRI: an initial clinical investigation. Eur Radiol 23:2739–2746Google Scholar
  24. 24.
    Pinkernelle JG, Streitparth F, Rump J et al (2010) Adaptation of a wireless PC mouse for modification of GUI during intervention in an open highfield MRI at 1.0T. Rofo 182:348–352PubMedCrossRefGoogle Scholar
  25. 25.
    American Society for Testing and Materials (ASTM) (2001) Designation: F 2119-01—standard test method for evaluation of MR image artifacts from passive implants. ASTM, West ConshohockenGoogle Scholar
  26. 26.
    Meister D, Hubner F, Mack M, Vogl TJ (2007) MR thermometry for laser-induced thermotherapy at 1.5 Tesla. Rofo 179:497–505PubMedCrossRefGoogle Scholar
  27. 27.
    Mougenot C, Quesson B, de Senneville BD et al (2009) Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med 61:603–614PubMedCrossRefGoogle Scholar
  28. 28.
    Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12:525–533PubMedCrossRefGoogle Scholar
  29. 29.
    Rieke V, Butts Pauly K (2008) MR thermometry. J Magn Reson Imaging 27:376–390PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Battie MC, Levalahti E, Videman T et al (2008) Heritability of lumbar flexibility and the role of disc degeneration and body weight. J Appl Physiol 104:379–385PubMedCrossRefGoogle Scholar
  31. 31.
    Wonneberger U, Schnackenburg B, Streitparth F et al (2010) Evaluation of magnetic resonance imaging-compatible needles and interactive sequences for musculoskeletal interventions using an open high-field magnetic resonance imaging scanner. Cardiovasc Intervent Radiol 33:346–351PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2013

Authors and Affiliations

  • Florian Streitparth
    • 1
  • Thula Walter
    • 1
  • Uta Wonneberger
    • 1
  • Bernhard Schnackenburg
    • 2
  • Carsten M. Philipp
    • 3
  • Federico Collettini
    • 1
  • Ulf K. M. Teichgräber
    • 1
  • Bernhard Gebauer
    • 1
  1. 1.Department of RadiologyCharité, Humboldt-University Medical SchoolBerlinGermany
  2. 2.Philips Medical SystemsHamburgGermany
  3. 3.Department of Laser MedicineElisabeth KlinikBerlinGermany

Personalised recommendations