CardioVascular and Interventional Radiology

, Volume 37, Issue 3, pp 770–776 | Cite as

Bipolar Radiofrequency Ablation: Development of a New Expandable Device

  • Nobutake ItoEmail author
  • Jochen Pfeffer
  • Peter Isfort
  • Tobias Penzkofer
  • Christiane K. Kuhl
  • Andreas H. Mahnken
  • Thomas Schmitz-Rode
  • Philipp Bruners
Laboratory Investigation



To test the performance of an expandable bipolar probe as a simple technical solution for extending the coagulation volume.


On the basis of a commercially available monopolar radiofrequency (RF) probe (LeVeen), an expandable bipolar RF probe was developed by integrating a second electrode into the probe shaft. The influence of length on the second electrode, and the distance between both electrodes and generator output was investigated by performing ten ablations for each condition on a freshly excised bovine liver. Macroscopically quantified coagulation volumes, lesion shape characteristics, and procedure durations were recorded. Results of the prototype featuring the optimal configuration were compared to the original LeVeen probe and commonly used bipolar RF probe (CelonLabPower).


Extension of the shaft electrode length, increasing distance between the shaft electrode and the tip electrode, and reduction of generator output resulted in increasing coagulation volumes. The coagulation volumes the prototype generated were significantly smaller and more elliptically shaped than the monopolar probe (9.4 ± 1.5 cm3 vs. 12.1 ± 1.6 cm3), but were larger than the commercially available bipolar RF probe (vs. 7.3 ± 0.5). The procedure duration of the prototype was comparable to the monopolar probe (467 ± 31 s vs. 464 ± 17 s) and shorter than the bipolar probe (vs. 2009 ± 444 s). In comparison to the commercially available bipolar system, the developed prototype exhibited favorable results.


The first benchmark testing of the developed bipolar prototype had promising results. However, further optimization of the applicator design and ablation protocol is needed to enlarge the achievable coagulation volume.


Liver Minimally invasive therapy Radiofrequency ablation 



The authors thank L. Schönherr for text editing.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ahmed M, Brace C, Lee F et al (2011) Principles of and advances in percutaneous ablation. Radiology 258:351–369PubMedCrossRefGoogle Scholar
  2. 2.
    de Baere T (2011) Lung tumor radiofrequency ablation: where do we stand? Cardiovasc Interv Radiol 34:241–251CrossRefGoogle Scholar
  3. 3.
    Venkatesan A, Wood B, Gervais D (2011) Percutaneous ablation in the kidney. Radiology 261:375–391PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Pereira PL, Trübenbach J, Schmidt D (2003) Radiofrequency ablation: basic principles, techniques and challenges. Fortschr Röntgenstr 175:20–27CrossRefGoogle Scholar
  5. 5.
    Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities—part I. J Vasc Interv Radiol 12:1021–1032CrossRefGoogle Scholar
  6. 6.
    Morimoto M, Sugimori K, Shirato K et al (2002) Treatment of hepatocellular carcinoma with radiofrequency ablation: radiologic–histologic correlation during follow-up periods. Hepatology 35:1467–1475PubMedCrossRefGoogle Scholar
  7. 7.
    Lee JM, Han JK, Kim SH et al (2005) Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol 184:391–397PubMedCrossRefGoogle Scholar
  8. 8.
    Sawada M, Watanabe S, Tsuda H, Kano T (2002) An increase in body temperature during radiofrequency ablation of liver tumors. Anesth Analg 94:1416–1420PubMedGoogle Scholar
  9. 9.
    Livraghi T, Solbiati L, Meloni MF et al (2003) Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 226:441–451PubMedCrossRefGoogle Scholar
  10. 10.
    Razafindratsira T, Isambert M, Evrard S (2011) Complication of intraoperative radiofrequency ablation of liver metastases. HPB (Oxford) 13:15–23CrossRefGoogle Scholar
  11. 11.
    Bruners P, Schmitz-Rode T, Günther RW, Mahnken A (2008) Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results. Rofo 180:216–222PubMedCrossRefGoogle Scholar
  12. 12.
    McGahan JP, Gu WZ, Brock JM et al (1996) Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol 3:418–422PubMedCrossRefGoogle Scholar
  13. 13.
    Tacke J, Mahnken A, Roggan A, Günther RW (2004) Multipolar radiofrequency ablation: first clinical results. Rofo 176:324–329PubMedCrossRefGoogle Scholar
  14. 14.
    Lee JM, Han JK, Kim SH et al (2003) A comparative experimental study of the in-vitro efficiency of hypertonic saline-enhanced hepatic bipolar and monopolar radiofrequency ablation. Korean J Radiol 4:163–169PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Haemmerich D, Staelin ST, Tungjitkusolmun S et al (2001) Hepatic bipolar radio-frequency ablation between separated multiprong electrodes. IEEE Trans Biomed Eng 48:1145–1152PubMedCrossRefGoogle Scholar
  16. 16.
    Mack MG, Straub R, Desinger K (2000) MR-guided interstitial bipolar RF thermometry: in-vivo evaluations and first clinical results. Radiology 217:359CrossRefGoogle Scholar
  17. 17.
    Stoffner R, Kremser C, Schullian P et al (2012) Multipolar radiofrequency ablation using 4–6 applicators simultaneously: a study in the ex vivo bovine liver. Eur J Radiol 8:2568–2575CrossRefGoogle Scholar
  18. 18.
    Neuhaus J, Blachut L, Rabenalt R et al (2011) Efficiency analysis of bipolar and multipolar radiofrequency ablation in an in vivo porcine kidney model using three-dimensional reconstruction of histologic section series. J Endourol 25:859–867PubMedCrossRefGoogle Scholar
  19. 19.
    Clasen S, Rempp H, Schmidt D et al (2012) Multipolar radiofrequency ablation using internally cooled electrodes in ex vivo bovine liver: correlation between volume of coagulation and amount of applied energy. Eur J Radiol 81:111–113PubMedCrossRefGoogle Scholar
  20. 20.
    Eisele RM, Neuhaus P, Schumacher G (2008) Radiofrequency ablation of liver tumors using a bipolar device. J Laparoendosc Adv Surg Tech A 18:857–863PubMedCrossRefGoogle Scholar
  21. 21.
    Meijerink MR, van den Tol P, van Tilborg AA et al (2011) Radiofrequency ablation of large size liver tumors using novel plan-parallel expandable bipolar electrodes: initial clinical experience. Eur J Radiol 77:167–171PubMedCrossRefGoogle Scholar
  22. 22.
    Frericks BB, Ritz JP, Roggan A et al (2005) Multipolar radiofrequency ablation of hepatic tumors: initial experience. Radiology 237:1056–1062PubMedCrossRefGoogle Scholar
  23. 23.
    Clasen S, Schmidt D, Boss A et al (2006) Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modelling. Radiology 238:881–890PubMedCrossRefGoogle Scholar
  24. 24.
    Brieger J, Pereira PL, Trubenbach J et al (2003) In vivo efficiency of four commercial monopolar radiofrequency ablation systems: a comparative experimental study in pig liver. Invest Radiol 38:609–616PubMedCrossRefGoogle Scholar
  25. 25.
    Bruners P, Pfeffer J, Kazim RM et al (2007) A newly developed perfused umbrella electrode for radiofrequency ablation: an ex vivo evaluation study in bovine liver. Cardiovasc Intervent Radiol 30:992–998PubMedCrossRefGoogle Scholar
  26. 26.
    Goldberg SN, Hahn PF, Tanabe KK et al (1998) Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 9:101–111PubMedCrossRefGoogle Scholar
  27. 27.
    Lee JM, Kim SH, Han JK et al (2005) Ex vivo experiment of saline-enhanced hepatic bipolar radiofrequency ablation with a perfused needle electrode: comparison with conventional monopolar and simultaneous monopolar modes. Cardiovasc Interv Radiol 28:338–345CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2013

Authors and Affiliations

  • Nobutake Ito
    • 1
    • 2
    Email author
  • Jochen Pfeffer
    • 1
  • Peter Isfort
    • 1
    • 2
  • Tobias Penzkofer
    • 1
    • 2
  • Christiane K. Kuhl
    • 1
  • Andreas H. Mahnken
    • 3
  • Thomas Schmitz-Rode
    • 2
  • Philipp Bruners
    • 1
  1. 1.Department for Diagnostic RadiologyRWTH Aachen UniversityAachenGermany
  2. 2.Applied Medical Engineering, Helmholtz-Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany
  3. 3.Department of RadiologyUniversity of MarburgMarburgGermany

Personalised recommendations