CardioVascular and Interventional Radiology

, Volume 36, Issue 5, pp 1190–1203 | Cite as

MR-Guided High-Intensity Focused Ultrasound: Current Status of an Emerging Technology

  • Alessandro Napoli
  • Michele Anzidei
  • Federica Ciolina
  • Eugenio Marotta
  • Beatrice Cavallo Marincola
  • Giulia Brachetti
  • Luisa Di Mare
  • Gaia Cartocci
  • Fabrizio Boni
  • Vincenzo Noce
  • Luca Bertaccini
  • Carlo Catalano
Review

Abstract

The concept of ideal tumor surgery is to remove the neoplastic tissue without damaging adjacent normal structures. High-intensity focused ultrasound (HIFU) was developed in the 1940s as a viable thermal tissue ablation approach. In clinical practice, HIFU has been applied to treat a variety of solid benign and malignant lesions, including pancreas, liver, prostate, and breast carcinomas, soft tissue sarcomas, and uterine fibroids. More recently, magnetic resonance guidance has been applied for treatment monitoring during focused ultrasound procedures (magnetic resonance–guided focused ultrasound, MRgFUS). Intraoperative magnetic resonance imaging provides the best possible tumor extension and dynamic control of energy deposition using real-time magnetic resonance imaging thermometry. We introduce the fundamental principles and clinical indications of the MRgFUS technique; we also report different treatment options and personal outcomes.

Keywords

Ablation Cancer High intensity focused ultrasound MR-guided intervention Noninvasive treatment 

References

  1. 1.
    DeVita VT Jr, Lawrence TS, Rosenberg SA (2001) Cancer: principles and practice of oncology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMedGoogle Scholar
  3. 3.
    Lee SH, Lee JM, Kim KW et al (2011) Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps. Invest Radiol 46:77–84PubMedCrossRefGoogle Scholar
  4. 4.
    Goldberg SN, Grassi CJ, Cardella JF et al (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20(7 suppl):S377–S390PubMedCrossRefGoogle Scholar
  5. 5.
    Goldberg SN, Gazelle GS, Mueller PR (2000) Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 174:323–331PubMedCrossRefGoogle Scholar
  6. 6.
    Lynn JG, Zwemer RL, Chick AJ (1942) The biological application of focused ultrasonic waves. Science 96(2483):119–120PubMedCrossRefGoogle Scholar
  7. 7.
    Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron ME-7:166–181PubMedCrossRefGoogle Scholar
  8. 8.
    Wang ZB, Wu F, Wang Z et al (1997) Targeted damage effects of high intensity focused ultrasound (HIFU) on liver tissues of Guizhou Province miniswine. Ultrason Sonochem 4:181–182PubMedCrossRefGoogle Scholar
  9. 9.
    Yu T, Luo J (2011) Adverse events of extracorporeal ultrasound-guided high intensity focused ultrasound therapy. PLoS One 6:e26110PubMedCrossRefGoogle Scholar
  10. 10.
    Jolesz FA (2009) MRI-guided focused ultrasound surgery. Annu Rev Med 60:417–430PubMedCrossRefGoogle Scholar
  11. 11.
    Jolesz FA, Hynynen K (2002) Magnetic resonance image-guided focused ultrasound surgery. Cancer J 8(suppl 1):S100–S112PubMedGoogle Scholar
  12. 12.
    Simon CJ, Dupuy DE, Mayo-Smith WW (2005) Microwave ablation: principles and applications. Radiographics 25(suppl 1):S69–S83PubMedCrossRefGoogle Scholar
  13. 13.
    ter Haar G (2010) Ultrasound bioeffects and safety. Proc Inst Mech Eng H 224:363–373PubMedGoogle Scholar
  14. 14.
    Jolesz FA, McDannold N (2008) Current status and future potential of MRI-guided focused ultrasound surgery. J Magn Reson Imaging 27:391–399PubMedCrossRefGoogle Scholar
  15. 15.
    Rabinovici J, David M, Fukunishi H et al (2010) Pregnancy outcome after magnetic resonance–guided focused ultrasound surgery (MRgFUS) for conservative treatment of uterine fibroids. Fertil Steril 93:199–209PubMedCrossRefGoogle Scholar
  16. 16.
    Schmitt F, Grosu D, Mohr C et al (2004) 3 Tesla MRI: successful results with higher field strengths (review). Radiologe 44:31–47PubMedCrossRefGoogle Scholar
  17. 17.
    Stewart EA, Gedroyc WM, Tempany CM et al (2003) Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am J Obstet Gynecol 189:48–54PubMedCrossRefGoogle Scholar
  18. 18.
    Harding G, Coyne KS, Thompson CL, Spies JB (2008) The responsiveness of the Uterine Fibroid Symptom and Health-Related Quality of Life questionnaire (UFS-QOL). Health Qual Life Outcomes 6:99PubMedCrossRefGoogle Scholar
  19. 19.
    Hesley GK, Felmlee JP, Gebhart JB et al (2006) Noninvasive treatment of uterine fibroids: early Mayo Clinic experience with magnetic resonance imaging–guided focused ultrasound. Mayo Clin Proc 81:936–942PubMedCrossRefGoogle Scholar
  20. 20.
    Funaki K, Fukunishi H, Sawada K (2009) Clinical outcomes of magnetic resonance–guided focused ultrasound surgery for uterine myomas: 24-month follow-up. Ultrasound Obstet Gynecol 34:584–589PubMedCrossRefGoogle Scholar
  21. 21.
    Behera MA, Leong M, Johnson L, Brown H (2010) Eligibility and accessibility of magnetic resonance–guided focused ultrasound (MRgFUS) for the treatment of uterine leiomyomas. Fertil Steril 94:1864–1868PubMedCrossRefGoogle Scholar
  22. 22.
    Kim YS, Kim JH, Rhim H et al (2012) Volumetric MR-guided high-intensity focused ultrasound ablation with a one-layer strategy to treat large uterine fibroids: initial clinical outcomes. Radiology 263:600–609PubMedCrossRefGoogle Scholar
  23. 23.
    Rabinovici J, Stewart EA (2006) New interventional techniques for adenomyosis. Best Pract Res Clin Obstet Gynaecol 20:617–636PubMedCrossRefGoogle Scholar
  24. 24.
    Fukunishi H, Funaki K, Sawada K et al (2008) Early results of magnetic resonance–guided focused ultrasound surgery of adenomyosis: analysis of 20 cases. J Minim Invasive Gynecol 15:571–579PubMedCrossRefGoogle Scholar
  25. 25.
    Dong X, Yang Z (2010) High-intensity focused ultrasound ablation of uterine localized adenomyosis. Curr Opin Obstet Gynecol 22:326–330PubMedGoogle Scholar
  26. 26.
    Hynynen K, Pomeroy O, Smith DN et al (2001) MR imaging–guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219:176–185PubMedGoogle Scholar
  27. 27.
    Gianfelice D, Khiat A, Amara et al (2003) MR imaging–guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings. Breast Cancer Res Treat 82:93–101PubMedCrossRefGoogle Scholar
  28. 28.
    Furusawa H, Namba K, Nakahara H et al (2007) The evolving non-surgical ablation of breast cancer: MR guided focused ultrasound (MRgFUS). Breast Cancer 14:55–58PubMedCrossRefGoogle Scholar
  29. 29.
    Wu F, Wang ZB, Zhu H et al (2005) Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat 92:51–60PubMedCrossRefGoogle Scholar
  30. 30.
    Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedCrossRefGoogle Scholar
  31. 31.
    Saarto T, Janes R, Tenhunen M, Kouri M (2002) Palliative radiotherapy in the treatment of skeletal metastases. Eur J Pain 6:323–330PubMedCrossRefGoogle Scholar
  32. 32.
    Catane R, Beck A, Inbar Y et al (2007) MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases—preliminary clinical experience. Ann Oncol 18:163–167PubMedCrossRefGoogle Scholar
  33. 33.
    Gianfelice D, Gupta C, Kucharczyk W et al (2008) Palliative treatment of painful bone metastases with MR imaging–guided focused ultrasound. Radiology 249:355–363PubMedCrossRefGoogle Scholar
  34. 34.
    Liberman B, Gianfelice D, Inbar Y et al (2009) Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 16:140–146PubMedCrossRefGoogle Scholar
  35. 35.
    Weeks EM, Platt MW, Gedroyc W (2012) MRI-guided focused ultrasound (MRgFUS) to treat facet joint osteoarthritis low back pain-case series of an innovative new technique. Eur Radiol 22:2822–2835PubMedCrossRefGoogle Scholar
  36. 36.
    Warmuth M, Johansson T, Mad P (2010) Systematic review of the efficacy and safety of high-intensity focussed ultrasound for the primary and salvage treatment of prostate cancer. Eur Urol 58:803–815PubMedCrossRefGoogle Scholar
  37. 37.
    Crouzet S, Poissonnier L, Murat FJ et al (2011) Outcomes of HIFU for localised prostate cancer using the Ablatherm Integrate Imaging(R) device. Prog Urol 21:191–197PubMedCrossRefGoogle Scholar
  38. 38.
    Blana A, Rogenhofer S, Ganzer R et al (2008) Eight years’ experience with high-intensity focused ultrasonography for treatment of localized prostate cancer. Urology 72:1329–1333PubMedCrossRefGoogle Scholar
  39. 39.
    Ahmed HU, Hindley RG, Dickinson L et al (2012) Focal therapy for localised unifocal and multifocal prostate cancer: a prospective development study. Lancet Oncol 13:622–632PubMedCrossRefGoogle Scholar
  40. 40.
    Nau WH, Diederich CJ, Ross AB et al (2005) MRI-guided interstitial ultrasound thermal therapy of the prostate: a feasibility study in the canine model. Med Phys 32:733–743PubMedCrossRefGoogle Scholar
  41. 41.
    Pauly KB, Diederich CJ, Rieke V et al (2006) Magnetic resonance–guided high-intensity ultrasound ablation of the prostate. Top Magn Reson Imaging 17:195–207PubMedCrossRefGoogle Scholar
  42. 42.
    Ram Z, Cohen ZR, Harnof S et al (2006) Magnetic resonance imaging–guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 59:949–955PubMedGoogle Scholar
  43. 43.
    McDannold N, Clement GT, Black P et al (2010) Transcranial magnetic resonance imaging– guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 66:323–332PubMedCrossRefGoogle Scholar
  44. 44.
    Hynynen K, Colucci V, Chung A, Jolesz F (1996) Noninvasive arterial occlusion using MRI-guided focused ultrasound. Ultrasound Med Biol 22:1071–1077PubMedCrossRefGoogle Scholar
  45. 45.
    Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging–guided focal opening of the blood–brain barrier in rabbits. Radiology 220:640–646PubMedCrossRefGoogle Scholar
  46. 46.
    McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793–807PubMedCrossRefGoogle Scholar
  47. 47.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci USA 103:11719–11723PubMedCrossRefGoogle Scholar
  48. 48.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340:1085–1090PubMedCrossRefGoogle Scholar
  49. 49.
    Broggi G, Dones I, Ferroli P, Franzini A, Pluderi M (2000) Contribution of thalamotomy, cordotomy and dorsal root entry zone Caudalis trigeminalis lesions in the treatment of chronic pain. Neurochirurgie 46:447–453PubMedGoogle Scholar
  50. 50.
    Jeanmonod D, Werner B, Morel A et al (2012) Transcranial magnetic resonance imaging–guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus 32:E1PubMedCrossRefGoogle Scholar
  51. 51.
    Orsi F, Zhang L, Arnone P et al (2010) High-intensity focused ultrasound ablation: effective and safe therapy for solid tumors in difficult locations. AJR Am J Roentgenol 195:W245–W252PubMedCrossRefGoogle Scholar
  52. 52.
    Wu F, Wang Z, Chen W (2001) Pathological study of extracorporeally ablated hepatocellular carcinoma with high-intensity focused ultrasound. Zhonghua Zhong Liu Za Zhi 23:237–239PubMedGoogle Scholar
  53. 53.
    Wu F, Wang ZB, Zhu H et al (2005) Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: initial experience. Radiology 236:1034–1040PubMedCrossRefGoogle Scholar
  54. 54.
    Wu F, Wang ZB, Chen WZ et al (2003) Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J Urol 170(6 pt 1):2237–2240PubMedCrossRefGoogle Scholar
  55. 55.
    Wu F, Wang ZB, Chen WZ et al (2005) Advanced hepatocellular carcinoma: treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology 235:659–667PubMedCrossRefGoogle Scholar
  56. 56.
    Illing RO, Kennedy JE, Wu F et al (2005) The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 93:890–895PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang L, Zhu H, Jin C et al (2009) High-intensity focused ultrasound (HIFU): effective and safe therapy for hepatocellular carcinoma adjacent to major hepatic veins. Eur Radiol 19:437–445PubMedCrossRefGoogle Scholar
  58. 58.
    Sung HY, Jung SE, Cho SH et al (2011) Long-term outcome of high-intensity focused ultrasound in advanced pancreatic cancer. Pancreas 40:1080–1086PubMedCrossRefGoogle Scholar
  59. 59.
    Ritchie RW, Leslie T, Phillips R et al (2010) Extracorporeal high intensity focused ultrasound for renal tumours: a 3-year follow-up. BJU Int 106:1004–1009PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2013

Authors and Affiliations

  • Alessandro Napoli
    • 1
  • Michele Anzidei
    • 1
  • Federica Ciolina
    • 1
  • Eugenio Marotta
    • 1
  • Beatrice Cavallo Marincola
    • 1
  • Giulia Brachetti
    • 1
  • Luisa Di Mare
    • 1
  • Gaia Cartocci
    • 1
  • Fabrizio Boni
    • 1
  • Vincenzo Noce
    • 1
  • Luca Bertaccini
    • 1
  • Carlo Catalano
    • 1
  1. 1.Department of Radiological SciencesSapienza, University of RomeRomeItaly

Personalised recommendations