CardioVascular and Interventional Radiology

, Volume 35, Issue 5, pp 1102–1108 | Cite as

Serum Gamma-Glutamyl-Transferase Independently Predicts Outcome After Transarterial Chemoembolization of Hepatocellular Carcinoma: External Validation

  • Boris GuiuEmail author
  • Frédéric Deschamps
  • Mathieu Boulin
  • Valérie Boige
  • David Malka
  • Michel Ducreux
  • Patrick Hillon
  • Thierry de Baère
Clinical Investigation



An Asian study showed that gamma glutamyl transpeptidase (GGT) can predict survival after transarterial chemoembolization (TACE) of hepatocellular carcinoma (HCC). This study was designed to validate in a European population this biomarker as an independent predictor of outcome after TACE of HCC and to determine a threshold value for clinical use.


In 88 consecutive patients treated by TACE for HCC, the optimal threshold for GGT serum level was determined by a ROC analysis. Endpoints were time-to-treatment failure (TTTF) and overall survival (OS). All multivariate models were internally validated using bootstrapping (90 replications).


Median follow-up lasted 373 days, and median overall survival was 748 days. The optimal threshold for GGT was 165 U/L (sensitivity: 89.3%; specificity: 56.7%; area under the ROC curve: 0.7515). Median TTTF was shorter when GGT was ≥165 U/L (281 days vs. 850 days; P < 0.001). GGT ≥165 U/L (hazard ratio (HR) = 2.06; P = 0.02), WHO PS of 2 (HR = 5.4; P = 0.002), and tumor size (HR = 1.12; P = 0.014) were independently associated with shorter TTTF. Median OS was shorter when GGT was ≥165 U/L (508 days vs. not reached; P < 0.001). GGT ≥ 165 U/L (HR = 3.05; P = 0.029), WHO PS of 2 (HR = 12.95; P < 0.001), alfa-fetoprotein (HR = 2.9; P = 0.01), and tumor size (HR = 1.096; P = 0.013) were independently associated with shorter OS. The results were confirmed by bootstrapping.


Our results provide in a European population the external validation of GGT as an independent predictor of outcome after TACE of HCC. A serum level of GGT ≥ 165 U/L is independently associated with both shorter TTTF and OS.


Liver cancer Cirrhosis Predictor Survival Chemoembolization 



The authors thank Philip Bastable for revising the English.

Conflict of interest

Boris Guiu, Frederic Deschamps, Mathieu Boulin, Valérie Boige, David Malka, Michel Ducreux, Patrick Hillon, and Thierry De Baère have no conflicts of interest to declare regarding this study.


  1. 1.
    Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42(5):1208–1236PubMedCrossRefGoogle Scholar
  2. 2.
    Camma C, Schepis F, Orlando A et al (2002) Transarterial chemoembolization for unresectable hepatocellular carcinoma: meta-analysis of randomized controlled trials. Radiology 224(1):47–54PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Bruix J (2003) Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37(2):429–442PubMedCrossRefGoogle Scholar
  4. 4.
    Llovet JM, Real MI, Montana X et al (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359(9319):1734–1739PubMedCrossRefGoogle Scholar
  5. 5.
    Lo CM, Ngan H, Tso WK et al (2002) Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 35(5):1164–1171PubMedCrossRefGoogle Scholar
  6. 6.
    Doffoel M, Bonnetain F, Bouche O et al (2008) Multicentre randomised phase III trial comparing Tamoxifen alone or with Transarterial Lipiodol Chemoembolisation for unresectable hepatocellular carcinoma in cirrhotic patients (Federation Francophone de Cancerologie Digestive 9402). Eur J Cancer 44(4):528–538PubMedCrossRefGoogle Scholar
  7. 7.
    Ikeda Y, Taniguchi N (2005) Gene expression of gamma-glutamyltranspeptidase. Methods Enzymol 401:408–425PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang JB, Chen Y, Zhang B et al (2011) Prognostic significance of serum gamma-glutamyl transferase in patients with intermediate hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Eur J Gastroenterol Hepatol 23:787–793PubMedCrossRefGoogle Scholar
  9. 9.
    Cabibbo G, Enea M, Attanasio M, Bruix J, Craxi A, Camma C (2010) A meta-analysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology 51(4):1274–1283PubMedCrossRefGoogle Scholar
  10. 10.
    Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34PubMedCrossRefGoogle Scholar
  11. 11.
    Cui J, de Klerk N, Abramson M et al (2009) Fractional polynomials and model selection in generalized estimating equations analysis, with an application to a longitudinal epidemiologic study in Australia. Am J Epidemiol 169(1):113–121PubMedCrossRefGoogle Scholar
  12. 12.
    Whitfield JB (2001) Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38(4):263–355PubMedCrossRefGoogle Scholar
  13. 13.
    Vickers AJ (2011) Prediction models: revolutionary in principle, but do they do more good than harm? J Clin Oncol 29(22):2951–2952PubMedCrossRefGoogle Scholar
  14. 14.
    Brown DB, Gould JE, Gervais DA et al (2009) Transcatheter therapy for hepatic malignancy: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20(7 Suppl):S425–S434PubMedCrossRefGoogle Scholar
  15. 15.
    Ruhl CE, Everhart JE (2009) Elevated serum alanine aminotransferase and gamma-glutamyltransferase and mortality in the United States population. Gastroenterology 136(2):477–485 e411PubMedCrossRefGoogle Scholar
  16. 16.
    Strasak AM, Pfeiffer RM, Klenk J et al (2008) Prospective study of the association of gamma-glutamyltransferase with cancer incidence in women. Int J Cancer 123(8):1902–1906PubMedCrossRefGoogle Scholar
  17. 17.
    Strasak AM, Rapp K, Brant LJ et al (2008) Association of gamma-glutamyltransferase and risk of cancer incidence in men: a prospective study. Cancer Res 68(10):3970–3977PubMedCrossRefGoogle Scholar
  18. 18.
    Poynard T, Zourabichvili O, Hilpert G et al (1984) Prognostic value of total serum bilirubin/gamma-glutamyl transpeptidase ratio in cirrhotic patients. Hepatology 4(2):324–327PubMedCrossRefGoogle Scholar
  19. 19.
    Hanigan MH (1998) gamma-Glutamyl transpeptidase, a glutathionase: its expression and function in carcinogenesis. Chem Biol Interact 111–112:333–342PubMedCrossRefGoogle Scholar
  20. 20.
    Hanigan MH, Frierson HF Jr, Swanson PE, De Young BR (1999) Altered expression of gamma-glutamyl transpeptidase in human tumors. Hum Pathol 30(3):300–305PubMedCrossRefGoogle Scholar
  21. 21.
    Hanigan MH, Gallagher BC, Townsend DM, Gabarra V (1999) Gamma-glutamyl transpeptidase accelerates tumor growth and increases the resistance of tumors to cisplatin in vivo. Carcinogenesis 20(4):553–559PubMedCrossRefGoogle Scholar
  22. 22.
    Hanigan MH, Pitot HC (1985) Gamma-glutamyl transpeptidase—its role in hepatocarcinogenesis. Carcinogenesis 6(2):165–172PubMedCrossRefGoogle Scholar
  23. 23.
    Efron B, Tibshirani RJ (1993) An introduction to the Bootstrap (Monographs on Statistics and Applied Probability). Chapman & Hall/CRC, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2011

Authors and Affiliations

  • Boris Guiu
    • 1
    • 2
    • 3
    Email author
  • Frédéric Deschamps
    • 1
  • Mathieu Boulin
    • 3
  • Valérie Boige
    • 4
  • David Malka
    • 4
  • Michel Ducreux
    • 4
  • Patrick Hillon
    • 3
  • Thierry de Baère
    • 1
  1. 1.Department of Interventional RadiologyInstitut Gustave RoussyVillejuifFrance
  2. 2.Department of RadiologyUniversity HospitalDijonFrance
  3. 3.INSERM U866University HospitalDijonFrance
  4. 4.Department of Digestive OncologyInstitut Gustave RoussyVillejuifFrance

Personalised recommendations