Advertisement

CardioVascular and Interventional Radiology

, Volume 35, Issue 4, pp 914–920 | Cite as

Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

  • Toshihiro TanakaEmail author
  • Saskia Westphal
  • Peter Isfort
  • Till Braunschweig
  • Tobias Penzkofer
  • Philipp Bruners
  • Kimihiko Kichikawa
  • Thomas Schmitz-Rode
  • Andreas H. Mahnken
Laboratory Investigation

Abstract

Purpose

To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue.

Materials and Methods

MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation.

Results

The mean short-axis diameters of the coagulation zones were 1.34 ± 0.14, 1.45 ± 0.13, and 1.74 ± 0.11 cm for MW ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 ± 0.09 and 1.26 ± 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 ± 0.65, 2.85 ± 0.72, and 4.45 ± 0.47 cm3 for MW ablation at outputs of 25W, 35W, and 45W and 1.18 ± 0.30 and 2.29 ± 0.55 cm3 got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations.

Conclusion

MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.

Keywords

Experimental IR Interventional Oncology Microwave ablation Ablation Radiofrequency ablation Breast Cancer 

Notes

Conflict of interest

The authors, Toshihiro Tanaka, Saskia Westphal, Peter Isfort, Till Braunschweig, Tobias Penzkofer, Philipp Bruners, Kimihiko Kichikawa, Thomas Schmitz-Rode and Andreas H. Mahnken, declare that they have no conflict of interest.

References

  1. 1.
    Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66PubMedCrossRefGoogle Scholar
  2. 2.
    van Esser S, van den Bosch MAAJ, van Diest PJ et al (2007) Minimally invasive ablation therapy for invasive breast carcinomas: an overview of current literature. World J Surg 31:2284–2292PubMedCrossRefGoogle Scholar
  3. 3.
    Zhao Z, Wu F (2010) Minimally-invasive thermal ablation of early-stage breast cancer: a systemic review. Eur J Surg Oncol 36:1149–1155PubMedCrossRefGoogle Scholar
  4. 4.
    Kinoshita T, Twamoto H, Tsuda H, Seki K (2011) Radiofrequency ablation as local therapy for early breast carcinomas. Breast Cancer 18:10–17PubMedCrossRefGoogle Scholar
  5. 5.
    Medina-Franco H, Soto-Germes S, Ulloa-Gomez JL et al (2008) Radiofrequency ablation of invasive breast carcinomas: a phase II trial. Ann Surg Oncol 15:1689–1696PubMedCrossRefGoogle Scholar
  6. 6.
    Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee FT Jr (2005) Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 236:132–139PubMedCrossRefGoogle Scholar
  7. 7.
    Yu J, Liang P, Yu X, Chen L, Wang Y (2011) A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Eur J Radiol [Epub ahead of print]Google Scholar
  8. 8.
    Laeseke PF, Lee FT, Sampson LA et al (2009) Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol 20:1224–1229PubMedCrossRefGoogle Scholar
  9. 9.
    Crocetti L, Brozzi E, Faviana P et al (2010) Thermal ablation of lung tissue: in vivo experimental comparison of microwave and radiofrequency. Cardiovasc Interv Radiol 33:818–827CrossRefGoogle Scholar
  10. 10.
    Bruners P, Lipka J, Günther RW et al (2008) Bipolar radiofrequency ablation: is the shape of the coagulation volume different in comparison to monopolar RF-abalation using variable active tip lengths? Minim Invasive Ther Allied Technol 17:267–274PubMedCrossRefGoogle Scholar
  11. 11.
    Manenti G, Bolacchi F, Perretta T et al (2009) Small breast cancers: in vivo percutaneous US-guided radiofrequency ablation with dedicated cool-tip radiofrequency system. Radiology 251:339–346PubMedCrossRefGoogle Scholar
  12. 12.
    Wiksell H, Löfgren L, Schässburger KU et al (2010) Feasibility study on the treatment of small breast carcinoma using percutaneous US-guided preferential radiofrequency ablation (PRFA). Breast 19:219–225PubMedCrossRefGoogle Scholar
  13. 13.
    Soukup B, Bismohun S, Reefy S, Mokbel K (2010) The evolving role of radiofrequency abalation therapy of breast lesions. Anticancer Res 30:3693–3698PubMedGoogle Scholar
  14. 14.
    Jeffrey SS, Birdwell RL, Ikeda DM et al (1999) Radiofrequency ablation of breast cancer: first report of an emerging technology. Arch Surg 134:1064–1068PubMedCrossRefGoogle Scholar
  15. 15.
    Stoeckelhuber BM, Noack F, Kapsimalakou S et al (2009) Radiofrequency ablation in breast tissue: experimental study for evaluation of radiofrequency effects in the bovine udder and review of the literature. J Vasc Interv Radiol 20:1477–1482PubMedCrossRefGoogle Scholar
  16. 16.
    Littrup PJ, Jallad B, Chandiwala-Mody P et al (2009) Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol 20:1329–1341PubMedCrossRefGoogle Scholar
  17. 17.
    Vandeweyer E, Hertens D (2002) Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 184:181–184PubMedCrossRefGoogle Scholar
  18. 18.
    Quaranta V, Manenti G, Cossu E et al (2007) FEM analysis of RF ablation: multiprobe versus cool-tip electrode. Anticancer Res 27:775–784PubMedGoogle Scholar
  19. 19.
    Böhm T, Malich A, Reichenbach JR et al (2001) Percutaneous radiofrequency (RF) thermal ablation of rabbit tumor embedded in fat: a model for RF ablation of breast tumor. Invest Radiol 36:480–486CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2011

Authors and Affiliations

  • Toshihiro Tanaka
    • 1
    • 4
    Email author
  • Saskia Westphal
    • 2
  • Peter Isfort
    • 1
    • 3
  • Till Braunschweig
    • 2
  • Tobias Penzkofer
    • 1
    • 3
  • Philipp Bruners
    • 1
    • 3
  • Kimihiko Kichikawa
    • 4
  • Thomas Schmitz-Rode
    • 1
  • Andreas H. Mahnken
    • 1
    • 3
  1. 1.Applied Medical Engineering, Helmholtz-Institute AachenRWTH Aachen UniversityAachenGermany
  2. 2.Department of Pathology Aachen University HospitalRWTH Aachen UniversityAachenGermany
  3. 3.Department of Diagnostic and Interventional Radiology, Aachen University HospitalRWTH Aachen UniversityAachenGermany
  4. 4.Department of RadiologyNara Medical UniversityKashiharaJapan

Personalised recommendations