Advertisement

CardioVascular and Interventional Radiology

, Volume 34, Issue 1, pp 139–148 | Cite as

Self-Expanding Nitinol Renal Artery Stents: Comparison of Safety and Efficacy of Bare Versus Polyzene-F Nanocoated Stents in a Porcine Model

  • P. Kurz
  • U. Stampfl
  • P. Christoph
  • C. Henn
  • S. Satzl
  • B. Radeleff
  • I. Berger
  • G. M. RichterEmail author
Laboratory Investigation

Abstract

Objective

To investigate the safety and efficacy of a Polyzene-F nanocoat on new low-profile self-expandable nitinol stents in minipig renal arteries.

Materials and Methods

Ten bare nitinol stents (BNS) and 10 stents coated with a 50 nm-thin Polyzene-F coating were randomly implanted into renal arteries of 10 minipigs (4- and 12-week follow-up, 5 animals/group). Thrombogenicity, on-stent surface endothelialization, vessel wall injury, late in-stent stenosis, and peristrut vessel wall inflammation were determined by quantitative angiography and postmortem histomorphometry.

Results

In 6 of 10 BNS, >50% stenosis was found, but no stenosis was found in stents with a nanothin Polyzene-F coating. Histomorphometry showed a statistically significant (p < 0.05) different average maximum luminal loss of 55.16% ± 8.43% at 12 weeks in BNS versus 39.77% ± 7.41% in stents with a nanothin Polyzene-F coating. Stents with a nanothin Polyzene-F coating had a significantly (p < 0.05) lower inflammation score after 12 weeks, 1.31 ± 1.17 versus 2.17 ± 0.85 in BNS. The results for vessel wall injury (0.6 ± 0.58 for Polyzene-F-coated stents; 0.72 ± 0.98 for BNS) and re-endothelialization, (1.16 ± 0.43 and 1.23 ± 0.54, respectively) were not statistically significant at 12-week follow-up. No thrombus deposition was observed on the stents at either follow-up time point.

Conclusion

Nitinol stents with a nanothin Polyzene-F coating successfully decreased in-stent stenosis and vessel wall inflammation compared with BNS. Endothelialization and vessel wall injury were found to be equal. These studies warrant long-term pig studies (≥120 days) because 12 weeks may not be sufficient time for complete healing; thereafter, human studies may be warranted.

Keywords

Interventional radiology In-stent stenosis Intimal hyperplasia Nitinol Renal artery stents Polyzene-F 

Notes

Conflict of interest

Authors U. S. and G. M. R received a research grant from CeloNova Biosciences, Newnan, GA, and G. M. R. has served as a consultant to CeloNova Biosciences, Newnan, GA.

References

  1. 1.
    Rees CR, Palmaz JC, Becker GJ et al (1991) Palmaz stent in atherosclerotic stenoses involving the ostia of the renal arteries: preliminary report of a multicenter study. Radiology 181:507–514PubMedGoogle Scholar
  2. 2.
    Leertouwer TC, Gussenhoven EJ, Bosch JL et al (2000) Stent placement for renal arterial stenosis: where do we stand? A meta-analysis. Radiology 216:78–85PubMedGoogle Scholar
  3. 3.
    Sivamurthy N, Surowiec SM, Culakova E et al (2004) Divergent outcomes after percutaneous therapy for symptomatic renal artery stenosis. J Vasc Surg 39:565–574CrossRefPubMedGoogle Scholar
  4. 4.
    Ahmadi R, Schillinger M, Sabeti S et al (2002) Renal artery PTA and stent implantation: immediate and late clinical and morphological outcome. Wien Klin Wochenschr 114:21–27PubMedGoogle Scholar
  5. 5.
    Boisclair C, Therasse E, Oliva VL et al (1997) Treatment of renal angioplasty failure by percutaneous renal artery stenting with Palmaz stents: midterm technical and clinical results. AJR Am J Roentgenol 168:245–251PubMedGoogle Scholar
  6. 6.
    Gill KS, Fowler RC (2003) Atherosclerotic renal arterial stenosis: clinical outcomes of stent placement for hypertension and renal failure. Radiology 226:821–826CrossRefPubMedGoogle Scholar
  7. 7.
    Chade AR (2006) Revascularization in atherosclerotic renovascular disease: problems beyond the obstruction. Kidney Int 70:830–832CrossRefPubMedGoogle Scholar
  8. 8.
    Holden A, Hill A, Jaff MR, Pilmore H (2006) Renal artery stent revascularization with embolic protection in patients with ischemic nephropathy. Kidney Int 70:948–955CrossRefPubMedGoogle Scholar
  9. 9.
    Holden A, Hill A (2003) Renal angioplasty and stenting with distal protection of the main renal artery in ischemic nephropathy: early experience. J Vasc Surg 38:962–968CrossRefPubMedGoogle Scholar
  10. 10.
    Muller-Hulsbeck S, Frahm C, Behm C et al (2005) Low-profile stent placement with the monorail technique for treatment of renal artery stenosis: midterm results of a prospective trial. J Vasc Interv Radiol 16:963–971PubMedGoogle Scholar
  11. 11.
    Neumann C, Gschwendtner M, Karnel F, Mair J, Dorffner G, Dorffner R (2005) Technical feasibility of the implantation of a monorail stent system into the renal arteries without pre-dilatation. Rofo 177:84–88PubMedGoogle Scholar
  12. 12.
    Amighi J, Sabeti S, Dick P et al (2005) Impact of the rapid-exchange versus over-the-wire technique on procedural complications of renal artery angioplasty. J Endovasc Ther 12:233–239CrossRefPubMedGoogle Scholar
  13. 13.
    McKelvey AL, Ritchie RO (1999) Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. J Biomed Mater Res 47:301–308CrossRefPubMedGoogle Scholar
  14. 14.
    Robertson SW, Ritchie RO (2007) In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials 28:700–709CrossRefPubMedGoogle Scholar
  15. 15.
    Schillinger M, Sabeti S, Loewe C et al (2006) Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N Engl J Med 354:1879–1888CrossRefPubMedGoogle Scholar
  16. 16.
    Schillinger M, Sabeti S, Dick P et al (2007) Sustained benefit at 2 years of primary femoropopliteal stenting compared with balloon angioplasty with optional stenting. Circulation 115:2745–2749CrossRefPubMedGoogle Scholar
  17. 17.
    Duda SH, Pusich B, Richter G et al (2002) Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: six-month results. Circulation 106:1505–1509CrossRefPubMedGoogle Scholar
  18. 18.
    Duda SH, Bosiers M, Lammer J et al (2005) Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: the SIROCCO II trial. J Vasc Interv Radiol 16:331–338PubMedGoogle Scholar
  19. 19.
    Huang Y, Liu X, Wang L, Li S, Verbeken E, De Scheerder I (2003) Long-term biocompatibility evaluation of a novel polymer-coated stent in a porcine coronary stent model. Coron Artery Dis 14:401–408CrossRefPubMedGoogle Scholar
  20. 20.
    Richter GM, Stampfl U, Stampfl S et al (2005) A new polymer concept for coating of vascular stents using PTFEP (poly(bis(trifluoroethoxy)phosphazene) to reduce thrombogenicity and late in-stent stenosis. Invest Radiol 40:210–218CrossRefPubMedGoogle Scholar
  21. 21.
    Satzl S, Henn C, Christoph P et al (2007) The efficacy of nanoscale poly[bis(trifluoroethoxy) phosphazene] (PTFEP) coatings in reducing thrombogenicity and late in-stent stenosis in a porcine coronary artery model. Invest Radiol 42:303–311CrossRefPubMedGoogle Scholar
  22. 22.
    Henn C, Satzl S, Christoph P et al (2008) Efficacy of a polyphosphazene nanocoat in reducing thrombogenicity, in-stent stenosis, and inflammatory response in porcine renal and iliac artery stents. J Vasc Interv Radiol 19:427–437CrossRefPubMedGoogle Scholar
  23. 23.
    Stampfl U, Sommer CM, Thierjung H et al (2008) Reduction of late in-stent stenosis in a porcine coronary artery model by cobalt chromium stents with a nanocoat of polyphosphazene (Polyzene-F). Cardiovasc Intervent Radiol 31:1184–1192CrossRefPubMedGoogle Scholar
  24. 24.
    Radeleff B, Thierjung H, Stampfl U et al (2008) Restenosis of the CYPHER-Select, TAXUS-Express, and Polyzene-F nanocoated cobalt-chromium stents in the minipig coronary artery model. Cardiovasc Intervent Radiol 31:971–980CrossRefPubMedGoogle Scholar
  25. 25.
    Brown MJ, Pearson PT, Tomson FN (1993) Guidelines for animal surgery in research and teaching. AVMA Panel on Animal Surgery in Research and Teaching, and the ASLAP (American Society of Laboratory Animal Practitioners). Am J Vet Res 54:1544–1559PubMedGoogle Scholar
  26. 26.
    Schwartz CJ, Sprague EA, Valente AJ, Kelley JL, Edwards EH (1989) Cellular mechanisms in the response of the arterial wall to injury and repair. Toxicol Pathol 17:66–71PubMedGoogle Scholar
  27. 27.
    Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31:224–230CrossRefPubMedGoogle Scholar
  28. 28.
    Knipp BS, Dimick JB, Eliason JL et al (2004) Diffusion of new technology for the treatment of renovascular hypertension in the United States: surgical revascularization versus catheter-based therapy, 1988–2001. J Vasc Surg 40:717–723CrossRefPubMedGoogle Scholar
  29. 29.
    Verheye S, Salame MY, Robinson KA et al (1999) Short- and long-term histopathologic evaluation of stenting using a self-expanding nitinol stent in pig carotid and iliac arteries. Catheter Cardiovasc Interv 48:316–323CrossRefPubMedGoogle Scholar
  30. 30.
    Garasic JM, Edelman ER, Squire JC, Seifert P, Williams MS, Rogers C (2000) Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101:812–818PubMedGoogle Scholar
  31. 31.
    Leopold JA, Loscalzo J (2000) Clinical importance of understanding vascular biology. Cardiol Rev 8:115–123CrossRefPubMedGoogle Scholar
  32. 32.
    Schwartz RS, Huber KC, Murphy JG et al (1992) Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 19:267–274CrossRefPubMedGoogle Scholar
  33. 33.
    Koster R, Vieluf D, Kiehn M et al (2000) Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 356:1895–1897CrossRefPubMedGoogle Scholar
  34. 34.
    Wataha JC, Lockwood PE, Marek M, Ghazi M (1999) Ability of Ni-containing biomedical alloys to activate monocytes and endothelial cells in vitro. J Biomed Mater Res 45:251–257CrossRefPubMedGoogle Scholar
  35. 35.
    Welle A, Grunze M, Tur D (1998) Plasma protein adsorption and platelet adhesion on poly. J Colloid Interface Sci 197:263–274CrossRefPubMedGoogle Scholar
  36. 36.
    Sangiorgi G, Arbustini E, Lanzarini P et al (2001) Nonbiodegradable expanded polytetrafluoroethylene-covered stent implantation in porcine peripheral arteries: histologic evaluation of vascular wall response compared with uncoated stents. Cardiovasc Intervent Radiol 24:260–270CrossRefPubMedGoogle Scholar
  37. 37.
    Galloni M, Prunotto M, Santarelli A et al (2003) Carbon-coated stents implanted in porcine iliac and renal arteries: histologic and histomorphometric study. J Vasc Interv Radiol 14:1053–1061PubMedGoogle Scholar
  38. 38.
    Holmes DR, Camrud AR, Jorgenson MA, Edwards WD, Schwartz RS (1994) Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents. J Am Coll Cardiol 24:525–531CrossRefPubMedGoogle Scholar
  39. 39.
    Briguori C, Sarais C, Pagnotta P et al (2002) In-stent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol 40:403–409CrossRefPubMedGoogle Scholar
  40. 40.
    Ballyk PD (2006) Intramural stress increases exponentially with stent diameter: a stress threshold for neointimal hyperplasia. J Vasc Interv Radiol 17:1139–1145CrossRefPubMedGoogle Scholar
  41. 41.
    Hara H, Nakamura M, Palmaz JC, Schwartz RS (2006) Role of stent design and coatings on restenosis and thrombosis. Adv Drug Deliv Rev 58:377–386CrossRefPubMedGoogle Scholar
  42. 42.
    Sangiorgi G, Melzi G, Agostoni P et al (2007) Engineering aspects of stents design and their translation into clinical practice. Ann Ist Super Sanita 43:89–100PubMedGoogle Scholar
  43. 43.
    Palmaz JC, Bailey S, Marton D, Sprague E (2002) Influence of stent design and material composition on procedure outcome. J Vasc Surg 36:1031–1039CrossRefPubMedGoogle Scholar
  44. 44.
    Rittersma SZ, de Winter RJ, Koch KT et al (2004) Impact of strut thickness on late luminal loss after coronary artery stent placement. Am J Cardiol 93:477–480CrossRefPubMedGoogle Scholar
  45. 45.
    Pache J, Kastrati A, Mehilli J et al (2003) Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 41:1283–1288CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2010

Authors and Affiliations

  • P. Kurz
    • 1
  • U. Stampfl
    • 2
  • P. Christoph
    • 2
  • C. Henn
    • 2
  • S. Satzl
    • 2
  • B. Radeleff
    • 2
  • I. Berger
    • 3
  • G. M. Richter
    • 1
    Email author
  1. 1.Clinics for Diagnostic and Interventional RadiologyKlinikum StuttgartStuttgartGermany
  2. 2.Department of Diagnostic and Interventional RadiologyUniversity of HeidelbergHeidelbergGermany
  3. 3.Institute of General PathologyHeidelbergGermany

Personalised recommendations