CardioVascular and Interventional Radiology

, Volume 34, Issue 4, pp 676–690 | Cite as

Nanotechnology and its Relationship to Interventional Radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention

  • Sarah Power
  • Michael M. Slattery
  • Michael J. Lee


Nanotechnology can be defined as the design, creation, and manipulation of structures on the nanometer scale. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part 2 of the article concentrates on drug delivery, thermotherapy, and vascular intervention. In oncology, advances in drug delivery allow for improved efficacy, decreased toxicity, and greater potential for targeted therapy. Magnetic nanoparticles show potential for use in thermotherapy treatments of various tumours, and the effectiveness of radiofrequency ablation can be enhanced with nanoparticle chemotherapy agents. In vascular intervention, much work is focused on prevention of restenosis through developments in stent technology and systems for localised drug delivery to vessel walls. Further areas of interest include applications for thrombolysis and haemostasis.


Nanotechnology Nanoparticle Angiogenesis Thermotherapy Restenosis  Drug delivery 


Conflict of interest

The authors declare they have no conflict of interest.


  1. 1.
    Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64PubMedCrossRefGoogle Scholar
  2. 2.
    Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459PubMedCrossRefGoogle Scholar
  3. 3.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252PubMedCrossRefGoogle Scholar
  4. 4.
    Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35:61–67PubMedCrossRefGoogle Scholar
  5. 5.
    Shukla R, Thomas TP, Peters JL et al (2006) HER2 specific tumor targeting with dendrimer conjugated Anti-HER2 mAb. Bioconjug Chem 17:1109–1115PubMedCrossRefGoogle Scholar
  6. 6.
    Uwatoku T, Shimokawa H, Abe K et al (2003) Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ Res 92:e62–e69PubMedCrossRefGoogle Scholar
  7. 7.
    Jin C, Bai L, Wu H et al (2007) Radiosensitization of paclitaxel, etanidazole, and paclitaxel + etanidazole nanoparticles on hypoxic human tumour cells in vitro. Biomaterials 28:3724–3730PubMedCrossRefGoogle Scholar
  8. 8.
    Li X, Li R, Qian X et al (2008) Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm 70:726–734PubMedCrossRefGoogle Scholar
  9. 9.
    Krishnadas A, Rubinstein I, Onyüksel H (2003) Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res 20:297–302PubMedCrossRefGoogle Scholar
  10. 10.
    Thrall JH (2004) Nanotechnology and medicine. Radiology 230:315–318PubMedCrossRefGoogle Scholar
  11. 11.
    Gordon R, Losic D, Tiffany MA et al (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127PubMedCrossRefGoogle Scholar
  12. 12.
    Chertok B, Moffat BA, David AE et al (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumours. Biomaterials 29:487–496PubMedCrossRefGoogle Scholar
  13. 13.
    Son SJ, Reichel J, He B et al (2005) Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc 127:7316–7317PubMedCrossRefGoogle Scholar
  14. 14.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651PubMedCrossRefGoogle Scholar
  15. 15.
    Alexis F, Rhee J, Richie JP et al (2008) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85PubMedCrossRefGoogle Scholar
  16. 16.
    Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265PubMedCrossRefGoogle Scholar
  17. 17.
    Couvreur P, Vauthier C (2006) Nanotechnology: intelligent design to treat complex disease. Pharm Res 23:1417–1450PubMedCrossRefGoogle Scholar
  18. 18.
    Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97PubMedCrossRefGoogle Scholar
  19. 19.
    Pope-Harmon A, Cheng MM, Robertson F et al (2007) Biomedical nanotechnology for cancer. Med Clin North Am 91:899–927CrossRefGoogle Scholar
  20. 20.
    Nie S, Y. X, Kim GJ, et al. (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288Google Scholar
  21. 21.
    Koo YL, Reddy GR, Bhojani M et al (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 58:1556–1577PubMedCrossRefGoogle Scholar
  22. 22.
    Kim KY (2007) Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine 3:103–110PubMedGoogle Scholar
  23. 23.
    Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 1:193–212PubMedGoogle Scholar
  24. 24.
    Harries M, Ellis P, Harper P (2005) Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J Clin Oncol 23:7768–7771PubMedCrossRefGoogle Scholar
  25. 25.
    Damascelli B, Patelli G, Tichá V et al (2007) Feasibility and efficacy of percutaneous transcatheter intrarterial chemotherapy with paclitaxel in albumin nanoparticles for advanced squamous-cell carcinoma of the oral cavity, oropharynx, and hypopharynx. J Vasc Interv Radiol 18:1395–1403PubMedCrossRefGoogle Scholar
  26. 26.
    Na K, Bae YH (2002) Self-Assembled hydrogel nanoparticles responsive to tumor extracellular ph from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm Res 19:681–688PubMedCrossRefGoogle Scholar
  27. 27.
    Reddy GR, Bhojani MS, McConville P et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumours. Clin Cancer Res 12:6677–6686PubMedCrossRefGoogle Scholar
  28. 28.
    Soma CE, Dubernet C, Bentolila D et al (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21:1–7PubMedCrossRefGoogle Scholar
  29. 29.
    Nakano K, Egashira K, Masuda S et al (2009) Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. JACC: Cardiovasc Interv 2:277–283CrossRefGoogle Scholar
  30. 30.
    Matsumura Y, Maeda H (1986) A New concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accummulation of proteins and the antitumour agents Smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  31. 31.
    Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284PubMedCrossRefGoogle Scholar
  32. 32.
    Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86:33–48PubMedCrossRefGoogle Scholar
  33. 33.
    Damascelli B, Cantù G, Mattavelli F et al (2001) Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 92:2592–2602PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou J, Leuschner C, Kumar C et al (2006) Sub-cellular accummulation of magnetic nanoparticles in breast tumors and metastases. Biomaterials 27:2001–2008PubMedCrossRefGoogle Scholar
  35. 35.
    Thorek DLJ, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38PubMedCrossRefGoogle Scholar
  36. 36.
    Moore A, Marecos E, Bogdanov A et al (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214:568–574PubMedGoogle Scholar
  37. 37.
    Barraud L, Merle P, Soma E et al (2005) Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol 42:736–743PubMedCrossRefGoogle Scholar
  38. 38.
    Storm G, Belliot SO, Daemen T et al (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48CrossRefGoogle Scholar
  39. 39.
    Gabizon A, Catane R, Uziely B et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992PubMedGoogle Scholar
  40. 40.
    Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340PubMedCrossRefGoogle Scholar
  41. 41.
    Leamon CP, Reddy JA (2004) Folate-targeted chemotherapy. Adv Drug Deliv Rev 56:1127–1141PubMedCrossRefGoogle Scholar
  42. 42.
    Tokumitsu H, Hiratsuka J, Sakurai Y et al (2000) Gadolinium neutron-capture therapy using novel gadopentetic acid-chitosan complex nanoparticles: in vivo growth suppression of experimental melanoma solid tumor. Cancer Lett 150:177–182PubMedCrossRefGoogle Scholar
  43. 43.
    Lesinski GB, Sharma S, Varker KA et al (2005) Release of biologically functional interferon-alpha from a nanochannel delivery system. Biomed Microdevices 7:71–79PubMedCrossRefGoogle Scholar
  44. 44.
    Damascelli B, Patelli GL, Lanocita R et al (2003) A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue: preliminary findings. AJR Am J Roentgenol 181:253–260PubMedGoogle Scholar
  45. 45.
    Nobuto H, Sugita T, Kubo T et al (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109:627–635PubMedCrossRefGoogle Scholar
  46. 46.
    Lemke AJ, Senfft von Pilsach MI, Lübbe A et al (2004) MRI after magnetic drug targeting in patients with advanced solid malignant tumours. Eur Radiol 14:1949–1955PubMedCrossRefGoogle Scholar
  47. 47.
    Avilés MO, Ebner AD, Ritter JA (2009) In vitro study of magnetic particle seeding for implant-assisted magnetic drug targeting: seed and magnetic drug carrier particle capture. J Magn Magn Mater 321:1586–1590CrossRefGoogle Scholar
  48. 48.
    Luciani A, Wilhelm C, Bruneval P et al (2009) Magnetic targeting of iron-oxide-labeled fluorescent hepatoma cells to the liver. Eur Radiol 19:1087–1096PubMedCrossRefGoogle Scholar
  49. 49.
    Mahmood U (2004) Can MR imaging be used to track delivery of intravascularly administered stem cells. Radiology 233:625–626PubMedCrossRefGoogle Scholar
  50. 50.
    Dick AJ, Guttman MA, Raman VK et al (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in swine. Circulation 108:2899–2904PubMedCrossRefGoogle Scholar
  51. 51.
    Bulte JW, Douglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRefGoogle Scholar
  52. 52.
    Rice HE, Hsu EW, Sheng H et al (2007) Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice. AJR Am J Roentgenol 188:1101–1108PubMedCrossRefGoogle Scholar
  53. 53.
    Bos C, Delmas Y, Desmoulière A et al (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789PubMedCrossRefGoogle Scholar
  54. 54.
    Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152PubMedCrossRefGoogle Scholar
  55. 55.
    Ferrara KW (2008) Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 60:1097–1102PubMedCrossRefGoogle Scholar
  56. 56.
    Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106PubMedCrossRefGoogle Scholar
  57. 57.
    Dayton PA, Zhao S, Bloch SH et al (2006) Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol Imaging 5:160–174PubMedGoogle Scholar
  58. 58.
    Nelson JL, Roeder BL, Carmen JC et al (2002) Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 62:7280–7283PubMedGoogle Scholar
  59. 59.
    Myhr G, Moan J (2006) Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 232:206–213PubMedCrossRefGoogle Scholar
  60. 60.
    Gao Z, Fain HD, Rapoport N (2005) Controlled and targeted tumor chemotherapy by micellar-encapusulated drug and ultrasound. J Control Release 102:203–222PubMedCrossRefGoogle Scholar
  61. 61.
    Pison U, Welte T, Giersig M et al (2006) Nanomedicine for respiratory disease. Eur J Pharmacol 533(1–3):341–350PubMedCrossRefGoogle Scholar
  62. 62.
    Azarmi S, Roa WH, Lobenberg R (2008) Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 60:863–875PubMedCrossRefGoogle Scholar
  63. 63.
    Marsh JN, Senpan A, Hu G et al (2007) Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine 2:533–543PubMedCrossRefGoogle Scholar
  64. 64.
    Lanza G, Winter P, Cyrus T et al (2006) Nanomedicine opportunities in cardiology. Ann N Y Acad Sci 1080:451–465PubMedCrossRefGoogle Scholar
  65. 65.
    Gerwin N, Hops C, Lucke A (2006) Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 58:226–242PubMedCrossRefGoogle Scholar
  66. 66.
    Mountziaris PM, Kramer PR, Mikos AG (2009) Emerging intra-articular drug delivery systems for the temporomandibular joint. Methods 47:134–140PubMedCrossRefGoogle Scholar
  67. 67.
    Horisawa E, Hirota T, Kawazoe S et al (2002) Prolonged anti-inflammatory action of DL-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res 19:403–410PubMedCrossRefGoogle Scholar
  68. 68.
    Raman JD, Hall DW, Cadeddu JA (2009) Renal ablative therapy: radiofrequency ablation and cryoablation. J Surg Oncol 100:639–644PubMedCrossRefGoogle Scholar
  69. 69.
    O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176PubMedCrossRefGoogle Scholar
  70. 70.
    Hildebrandt B, Wust P, Ahlers O et al (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56PubMedCrossRefGoogle Scholar
  71. 71.
    Hilger I, Hergt R, Kaiser WA (2005) Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc Nanobiotechnol 152:33–39PubMedCrossRefGoogle Scholar
  72. 72.
    Johannsen M, Gneveckow U, Taymoorian K et al (2007) Thermal therapy of prostate cancer using magnetic nanoparticles. Actas Urol Esp 31:660–667PubMedCrossRefGoogle Scholar
  73. 73.
    Takamatsu S, Matsui O, Gabata T et al (2008) Selective induction hyperthermia following transcatheter arterial embolization with a mixture of nano-sized magnetic particles (ferucarbotran) and embolic materials: feasibility study in rabbits. Radiat Med 26:179–187PubMedCrossRefGoogle Scholar
  74. 74.
    Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three dimensional temperature distribution. Eur Urol 52:1653–1661PubMedCrossRefGoogle Scholar
  75. 75.
    Hilger I, Andrä W, Hergt R et al (2001) Electromagnetic heating of breast tumours in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575PubMedGoogle Scholar
  76. 76.
    Ahmed M, Monsky WE, Girnun G et al (2003) Radiofrequency thermal ablation sharply increases intratumoural liposomal doxorubicin accummulation and tumor coagulation. Cancer Res 63:6327–6333PubMedGoogle Scholar
  77. 77.
    Goldberg SN, Girnan GD, Lukyanov AN et al (2002) Percutaneous tumor ablation: increased necrosis with combined radiofrequency ablation and intravenous liposomal doxorubicin in a rat breast tumour model. Radiology 222:797–804PubMedCrossRefGoogle Scholar
  78. 78.
    Goldberg SN, Kamel IR, Kruskal JB et al (2002) Radiofrequency ablation of hepatic tumours: increased tumour destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol 179:93–101PubMedGoogle Scholar
  79. 79.
    Ahmed M, Liu Z, Lukyanov AN et al (2005) Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accummulation and coagulation in multiple tissues and tumor types in animals. Radiology 235:469–477PubMedCrossRefGoogle Scholar
  80. 80.
    Ahmed M, Lukyanov AN, Torchilin V et al (2005) Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol 16:1365–1371PubMedGoogle Scholar
  81. 81.
    Kong DF, Goldschmidt-Clermont PJ (2005) Tiny solutions for giant cardiac problems. Trends Cardiovasc Med 15:207–211PubMedCrossRefGoogle Scholar
  82. 82.
    Stone GW, Ellis SG, Cox DA et al (2004) A polymer-based paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231PubMedCrossRefGoogle Scholar
  83. 83.
    Babapulle MN, Joseph L, Bélisle P et al (2004) A hierarchical bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364(9434):583–591PubMedCrossRefGoogle Scholar
  84. 84.
    Stone GW, Ellis SG, Cox DA et al (2004) One-year clinical results with the slow-release, polymer based, paclitaxel-eluting TAXUS stent. The TAXUS-IV trial. Circulation 109:1942–1947PubMedCrossRefGoogle Scholar
  85. 85.
    Lansky AJ, Costa RA, Mintz GS et al (2004) Non-polymer-based paclitaxel-coated coronary stents for the treatment of pateints with de novo coronary lesions. Angiographic follow-up of the DELIVER clinical trial. Circulation 109:1948–1954PubMedCrossRefGoogle Scholar
  86. 86.
    Virmani R, Liistro F, Stankovic G et al (2002) Mechanism of late in-stent restenosis after implantation of a paclitaxel derivative-eluting polymer stent system in humans. Circulation 106:2649–2651PubMedCrossRefGoogle Scholar
  87. 87.
    Laskey WK, Yancy CW, Maisel WH (2007) Thrombosis in coronary drug-eluting stents: report from the meeting of the Circulatory System Medical Devices Advisory Panel of the Food and Drug Administration Center for Devices and Radiologic Health, December 7–8, 2006. Circulation 115:2352–2357PubMedCrossRefGoogle Scholar
  88. 88.
    Caves JM, Chaikof EL (2006) The evolving impact of microfabrication and nanotechnology on stent design. J Vasc Surg 44:1363–1368PubMedCrossRefGoogle Scholar
  89. 89.
    Finkelstein A, McClean D, Kar S et al (2003) Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation 107:777–784PubMedCrossRefGoogle Scholar
  90. 90.
    Reed ML, Wu C, Kneller J et al (1998) Micromechanical devices for intravascular drug delivery. J Pharm Sci 87:1387–1394PubMedCrossRefGoogle Scholar
  91. 91.
    Bhargava B, Reddy NK, Karthikeyan G et al (2006) A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: evaluation in a porcine model. Catheter Cardiovasc Interv 67:698–702PubMedCrossRefGoogle Scholar
  92. 92.
    Guzman LA, Labhasetwar V, Song C et al (1996) Local intraluminal infusion of biodegradable polymeric nanoparticles: a novel approach for prolonged drug delivery after balloon angioplasty. Circulation 94:1441–1448PubMedGoogle Scholar
  93. 93.
    Kolodgie FD, John M, Khurana C et al (2002) Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 106:1118–1195CrossRefGoogle Scholar
  94. 94.
    Labhasetwar V, Song C, Humphrey W et al (1998) Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci 87:1229–1234PubMedCrossRefGoogle Scholar
  95. 95.
    Lanza GM, Winter PM, Yu X et al (2002) Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 106:2842–2847PubMedCrossRefGoogle Scholar
  96. 96.
    Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274PubMedCrossRefGoogle Scholar
  97. 97.
    Winter PM, Neubauer AM, Caruthers SD et al (2006) Endothelial αvβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109PubMedCrossRefGoogle Scholar
  98. 98.
    Sprague EA, Pomeranz ML, Odess I et al (2008) Surface material, surface treatment and nanotechnology in cardiovascular stent development. EuroIntervention 4(Suppl C):C60–C62PubMedGoogle Scholar
  99. 99.
    Lu J, Rao MP, MacDonald NC et al (2008) Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater 4:192–201PubMedCrossRefGoogle Scholar
  100. 100.
    Kubo K, Tsukimura N, Iwasa F et al (2009) Cellular behaviour on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30:5319–5329PubMedCrossRefGoogle Scholar
  101. 101.
    Khang D, Lu J, Yao C et al (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–983PubMedCrossRefGoogle Scholar
  102. 102.
    Miller DC, Haberstroh KM, Webster TJ (2005) Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films. J Biomed Mater Res A 73A:476–484CrossRefGoogle Scholar
  103. 103.
    Miller DC, Thapa A, Haberstroh KM et al (2004) Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials 25:53–61PubMedCrossRefGoogle Scholar
  104. 104.
    Liu H, Webster TJ (2006) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28:354–369PubMedCrossRefGoogle Scholar
  105. 105.
    Aoki J, Serruys PW, van Beusekom H et al (2005) Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol 45:1574–1579PubMedCrossRefGoogle Scholar
  106. 106.
    Rotmans JI, Heyligers JM, Verhagen HJ et al (2005) In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 112:12–18PubMedCrossRefGoogle Scholar
  107. 107.
    Lo CT, Van Tassel PR, Saltzman WM (2009) Simultaneous release of multiple molecules from poly(lactide-co-glycolide) nanoparticles assembled onto medical devices. Biomaterials 30:4889–4897PubMedCrossRefGoogle Scholar
  108. 108.
    Krishna OD, Kim K, Byun Y (2005) Covalently grafted phospholipid monolayer on silicone catheter surface for reduction in platelet adhesion. Biomaterials 26:7115–7123PubMedCrossRefGoogle Scholar
  109. 109.
    Ellis–Behnke RG, Liang Y, Tay DK et al (2006) Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine 2:207–215PubMedGoogle Scholar
  110. 110.
    Holland CK, Vaidya SS, Datta S et al (2008) Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res 121:663–673PubMedCrossRefGoogle Scholar
  111. 111.
    Wissgott C, Richter A, Kamusella P et al (2007) Treatment of critcal limb ischaemia using ultrasound enhanced thrombolysis (PARES Trial): final results. J Endovasc Ther 14:433–438CrossRefGoogle Scholar
  112. 112.
    Parikh S, Motarjeme A, McNamara T et al (2008) Ultrasound-accelerated thrombolysis for the treatment of deep venous thrombosis: initial clinical experience. J Vasc Interv Radiol 19:521–528PubMedCrossRefGoogle Scholar
  113. 113.
    Alexandrov AV, Molina CA, Grotta JC et al (2004) Ultrasound-enhanced systemic thrombolysis for acute ischaemic stroke. N Engl J Med 351(21):2170–2178PubMedCrossRefGoogle Scholar
  114. 114.
    Molina CA, Ribo M, Rubiera M et al (2006) Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37:425–429PubMedCrossRefGoogle Scholar
  115. 115.
    Culp WC, Porter TR, McCowan TC et al (2003) Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs. J Vasc Interv Radiol 14:343–347PubMedGoogle Scholar
  116. 116.
    Laing ST, McPherson DD (2009) Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res 83:626–635PubMedCrossRefGoogle Scholar
  117. 117.
    Tiukinhoy-Laing SD, Buchanan K, Parikh D et al (2007) Fibrin targeting of tissue plasminogen activator-loaded echogenic liposomes. J Drug Target 15:109–114PubMedCrossRefGoogle Scholar
  118. 118.
    Tiukinhoy-Laing SD, Huang S, Klegerman M et al (2007) Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 119:777–784PubMedCrossRefGoogle Scholar
  119. 119.
    Thomas K, Aguar P, Kawasaki H et al (2006) Research strategies for safety evaulation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32PubMedCrossRefGoogle Scholar
  120. 120.
    Borm PJA, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11PubMedCrossRefGoogle Scholar
  121. 121.
    Curtis J, Greenberg M, Kester J et al (2006) Nanotechnology and nanotoxicology: a primer for clinicians. Toxicol Rev 25:245–260PubMedCrossRefGoogle Scholar
  122. 122.
    Lam CW, James JT, McCluskey R et al (2004) Pulmonary toxicity of single walled carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134PubMedCrossRefGoogle Scholar
  123. 123.
    Barillet S, Simon-Deckers A, Herlin-Boime N et al (2010) Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubed exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12:61–73CrossRefGoogle Scholar
  124. 124.
    Wang B, Feng W, Zhu M et al (2009) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res 11:41–53CrossRefGoogle Scholar
  125. 125.
    Villiers CL, Freitas H, Couderc R et al (2010) Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 12:55–60CrossRefPubMedGoogle Scholar
  126. 126.
    Yu KO, Grabinski CM, Schrand AM et al (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24CrossRefGoogle Scholar
  127. 127.
    Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3:243–246PubMedCrossRefGoogle Scholar
  128. 128.
    Mathieu JB, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53:292–299PubMedCrossRefGoogle Scholar
  129. 129.
    Cavalcanti A, Shirinzadeh B, Freitas FA Jr et al (2008) Nanorobot architecture for medical target identification. Nanotechnology 19:015103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2010

Authors and Affiliations

  • Sarah Power
    • 1
  • Michael M. Slattery
    • 1
  • Michael J. Lee
    • 1
  1. 1.Department of RadiologyBeaumont HospitalDublin 9Ireland

Personalised recommendations