Advertisement

CardioVascular and Interventional Radiology

, Volume 33, Issue 2, pp 297–306 | Cite as

Radiofrequency Ablation of Liver Metastases—Software-Assisted Evaluation of the Ablation Zone in MDCT: Tumor-Free Follow-Up Versus Local Recurrent Disease

  • Sebastian KeilEmail author
  • Philipp Bruners
  • Katharina Schiffl
  • Martin Sedlmair
  • Georg Mühlenbruch
  • Rolf W. Günther
  • Marco Das
  • Andreas H. Mahnken
Clinical Investigation

Abstract

The purpose of this study was to investigate differences in change of size and CT value between local recurrences and tumor-free areas after CT-guided radiofrequency ablation (RFA) of hepatic metastases during follow-up by means of dedicated software for automatic evaluation of hepatic lesions. Thirty-two patients with 54 liver metastases from breast or colorectal cancer underwent triphasic contrast-enhanced multidetector-row computed tomography (MDCT) to evaluate hepatic metastatic spread and localization before CT-guided RFA and for follow-up after intervention. Sixteen of these patients (65.1 ± 10.3 years) with 30 metastases stayed tumor-free (group 1), while the other group (n = 16 with 24 metastases; 62.0 ± 13.8 years) suffered from local recurrent disease (group 2). Applying an automated software tool (SyngoCT Oncology; Siemens Healthcare, Forchheim, Germany), size parameters (volume, RECIST, WHO) and attenuation were measured within the lesions before, 1 day after, and 28 days after RFA treatment. The natural logarithm (ln) of the quotient of the volume 1 day versus 28 days after RFA treament was computed: lnQ1//28/0volume. Analogously, ln ratios of RECIST, WHO, and attenuation were computed and statistically evaluated by repeated-measures ANOVA. One lesion in group 2 was excluded from further evaluation due to automated missegmentation. Statistically significant differences between the two groups were observed with respect to initial volume, RECIST, and WHO (p < 0.05). Furthermore, ln ratios corresponding to volume, RECIST, and WHO differed significantly between the two groups. Attenuation evaluations showed no significant differences, but there was a trend toward attenuation assessment for the parameter lnQ28/0attenuation (p = 0.0527), showing higher values for group 1 (–0.4 ± 0.3) compared to group 2 (–0.2 ± 0.2). In conclusion, hepatic metastases and their zone of coagulation necrosis after RFA differed significantly between tumor-free and local-recurrent ablation zones with respect to the corresponding size parameters. A new parameter (lnQ1//28/0volume/RECIST/WHO/attenuation) was introduced, which appears to be of prognostic value at early follow-up CT.

Keywords

Hepatic metastases Radiofrequency ablation Automated evaluation 

References

  1. 1.
    Mergo PJ, Ros PR (1998) Imaging of diffuse liver disease. Radiol Clin North Am 36:365–375CrossRefPubMedGoogle Scholar
  2. 2.
    Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16:481–488CrossRefPubMedGoogle Scholar
  3. 3.
    Landis SH, Murray T, Bolden S et al (1999) Cancer statistics, 1999. CA Cancer J Clin 49:8–31, 1Google Scholar
  4. 4.
    Greenlee RT, Hill-Harmon MB, Murray T et al (2001) Cancer statistics, 2001. CA Cancer J Clin 51:15–36CrossRefPubMedGoogle Scholar
  5. 5.
    Hoe AL, Royle GT, Taylor I (1991) Breast liver metastases—incidence, diagnosis and outcome. J R Soc Med 84:714–716PubMedGoogle Scholar
  6. 6.
    McGhana JP, Dodd GD III (2001) Radiofrequency ablation of the liver: current status. AJR Am J Roentgenol 176:3–16PubMedGoogle Scholar
  7. 7.
    Rhim H, Lim HK, Kim YS et al (2008) Radiofrequency ablation of hepatic tumors: lessons learned from 3000 procedures. J Gastroenterol Hepatol 23:1492–1500CrossRefPubMedGoogle Scholar
  8. 8.
    Buscarini E, Buscarini L (2004) Radiofrequency thermal ablation with expandable needle of focal liver malignancies: complication report. Eur Radiol 14:31–37CrossRefPubMedGoogle Scholar
  9. 9.
    Mulier S, Ni Y, Miao Y et al (2003) Size and geometry of hepatic radiofrequency lesions. Eur J Surg Oncol 29(10):867–878CrossRefPubMedGoogle Scholar
  10. 10.
    Kim YS, Rhim H, Cho OK et al (2006) Intrahepatic recurrence after percutaneous radiofrequency ablation of hepatocellular carcinoma: analysis of the pattern and risk factors. Eur J Radiol 59:432–441CrossRefPubMedGoogle Scholar
  11. 11.
    Mahnken AH, Bruners P, Tacke JA et al (2009) CT-guided radiofrequency ablation of liver metastases from colorectal cancer. Dtsch Med Wochenschr 134:976–980CrossRefPubMedGoogle Scholar
  12. 12.
    Abdalla EK, Vauthey JN, Ellis LM et al (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239:818–825; discussion 825–827CrossRefPubMedGoogle Scholar
  13. 13.
    Bruners P, Pfeffer J, Kazim RM et al (2007) A newly developed perfused umbrella electrode for radiofrequency ablation: an ex vivo evaluation study in bovine liver. Cardiovasc Interv Radiol 30:992–998CrossRefGoogle Scholar
  14. 14.
    Veltri A, Sacchetto P, Tosetti I et al (2008) Radiofrequency ablation of colorectal liver metastases: small size favorably predicts technique effectiveness and survival. Cardiovasc Interv Radiol 31(5):948–956CrossRefGoogle Scholar
  15. 15.
    Dromain C, de Baere T, Elias D et al (2002) Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MR imaging follow-up. Radiology 223:255–262CrossRefPubMedGoogle Scholar
  16. 16.
    Wormanns D, Kohl G, Klotz E et al (2004) Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol 14:86–92CrossRefPubMedGoogle Scholar
  17. 17.
    Marten K, Auer F, Schmidt S et al (2006) Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol 16:781–790CrossRefPubMedGoogle Scholar
  18. 18.
    Fabel M, von Tengg-Kobligk H, Giesel FL et al (2008) Semi-automated volumetric analysis of lymph node metastases in patients with malignant melanoma stage III/IV—a feasibility study. Eur Radiol 18:1114–1122CrossRefPubMedGoogle Scholar
  19. 19.
    Kuhnigk JM, Dicken V, Bornemann L et al (2006) Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 25:417–434CrossRefPubMedGoogle Scholar
  20. 20.
    Bornemann L, Dicken V, Kuhnigk JM et al (2007) OncoTREAT: a software assistant for cancer therapy monitoring. Int J Comput Assist Radiol Surg 1:231–242CrossRefGoogle Scholar
  21. 21.
    Benson AB III (2007) Epidemiology, disease progression, and economic burden of colorectal cancer. J Manage Care Pharm 13:5–18Google Scholar
  22. 22.
    Pereira PL (2007) Actual role of radiofrequency ablation of liver metastases. Eur Radiol 17:2062–2070CrossRefPubMedGoogle Scholar
  23. 23.
    Jakobs TF, Hoffmann RT, Schrader A et al (2008) CT-guided radiofrequency ablation in patients with hepatic metastases from breast cancer. Cardiovasc Interv Radiol [Epub ahead of print]Google Scholar
  24. 24.
    Park MH, Rhim H, Kim YS et al (2008) Spectrum of CT findings after radiofrequency ablation of hepatic tumors. Radiographics 28:379–390; discussion 390–392CrossRefPubMedGoogle Scholar
  25. 25.
    Goldberg SN, Grassi CJ, Cardella JF et al (2005) Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 235:728–739CrossRefPubMedGoogle Scholar
  26. 26.
    Mulier S, Ni Y, Jamart J et al (2005) Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg 242:158–171CrossRefPubMedGoogle Scholar
  27. 27.
    Paulet E, Aube C, Pessaux P et al (2008) Factors limiting complete tumor ablation by radiofrequency ablation. Cardiovasc Intervent Radiol 31:107–115CrossRefPubMedGoogle Scholar
  28. 28.
    Kühl H, Stattaus J, Kühl B et al (2006) Radiofrequency ablation of malignant liver tumors: use of a volumetric necrosis-tumor ratio for local control. Fortschr Roentgenstr 178:1243–1249 [in German]CrossRefGoogle Scholar
  29. 29.
    Prasad SR, Jhaveri KS, Saini S et al (2002) CT tumor measurement for therapeutic response assessment: comparison of unidimensional, bidimensional, and volumetric techniques initial observations. Radiology 225:416–419CrossRefPubMedGoogle Scholar
  30. 30.
    Keil S, Behrendt FF, Stanzel S et al (2009) Semi-automated measurement of hyperdense, hypodense and heterogeneous hepatic metastasis on standard MDCT slices. Comparison of semi-automated and manual measurement of RECIST and WHO criteria. Eur Radiol 18:2456–2465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) 2009

Authors and Affiliations

  • Sebastian Keil
    • 1
    Email author
  • Philipp Bruners
    • 1
    • 4
  • Katharina Schiffl
    • 2
  • Martin Sedlmair
    • 3
  • Georg Mühlenbruch
    • 1
  • Rolf W. Günther
    • 1
  • Marco Das
    • 1
  • Andreas H. Mahnken
    • 1
    • 4
  1. 1.Department of Diagnostic RadiologyUniversity Hospital, RWTH Aachen UniversityAachenGermany
  2. 2.Institute of Medical StatisticsUniversity Hospital, RWTH Aachen UniversityAachenGermany
  3. 3.Siemens HealthcareForchheimGermany
  4. 4.Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany

Personalised recommendations