Advertisement

Aneurysm Sac Pressure Measurement with Minimally Invasive Implantable Pressure Sensors: An Alternative to Current Surveillance Regimes after EVAR?

  • Fabian SpringerEmail author
  • Rolf W. Günther
  • Thomas Schmitz-Rode
Review

Abstract

Current protocols for surveillance after endovascular repair (EVAR) of abdominal aortic aneurysms are mostly based on costly and time-consuming imaging procedures and aim to detect adverse events such as graft migration, endoleaks or aneurysm sac enlargement. These imaging procedures are either associated with radiation exposure to the patients or may be harmful to the patient due to the use of iodine- or gadolinium-containing contrast agents. Furthermore the advantages of EVAR in the short term might be negated by the necessity for endograft surveillance over years. Thus, alternative modalities for follow-up are being investigated. One of these technologies provides pressure information directly from the aneurysm sac. This noninvasive, telemetric pressure sensing was tested in vitro as well as in first clinical trials and was able to identify successful aneurysm exclusion after EVAR. The telemetric pressure sensors showed a promising efficacy and accuracy in detecting type I and type III endoleaks and will help to clarify the clinical relevance of type II endoleaks. This article provides an overview of the in vitro sensors investigated as well as the first clinical trials and the sensors’ potential to change the current endograft surveillance regimes.

Keywords

Abdominal aortic aneurysm Endovascular repair Pressure sensor Surveillance regime 

References

  1. 1.
    Parodi JC, Palmaz JC, Barone HD (1991) Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg 5:491–499PubMedCrossRefGoogle Scholar
  2. 2.
    Jordan WD, Alcocer F, Wirthlin DJ, et al. (2003) Abdominal aortic aneurysms in “high-risk” surgical patients: Comparison of open and endovascular repair. Ann Surg 237:623–629; discussion 629–630PubMedCrossRefGoogle Scholar
  3. 3.
    Golzarian J, Valenti D (2006) Endoleakage after endovascular treatment of abdominal aortic aneurysms: Diagnosis, significance and treatment. Eur Radiol 16:2849–2857PubMedCrossRefGoogle Scholar
  4. 4.
    Dubenec SR, White GH, Pasenau J, et al. (2003) Endotension. A review of current views on pathophysiology and treatment. J Cardiovasc Surg (Torino) 44:553–557Google Scholar
  5. 5.
    Gilling-Smith G, Brennan J, Harris P, et al. (1999) Endotension after endovascular aneurysm repair: Definition, classification, and strategies for surveillance and intervention. J Endovasc Surg 6:305–307PubMedCrossRefGoogle Scholar
  6. 6.
    White GH, May J, Petrasek P, et al. (1999) Endotension: An explanation for continued AAA growth after successful endoluminal repair. J Endovasc Surg 6:308–315PubMedCrossRefGoogle Scholar
  7. 7.
    Napoli V, Bargellini I, Sardella SG, et al. (2004) Abdominal aortic aneurysm: Contrast-enhanced US for missed endoleaks after endoluminal repair. Radiology 233:217–225PubMedCrossRefGoogle Scholar
  8. 8.
    d’Audiffret A, Desgranges P, Kobeiter DH, et al. (2001) Follow-up evaluation of endoluminally treated abdominal aortic aneurysms with duplex ultrasonography: Validation with computed tomography. J Vasc Surg 33:42–50PubMedCrossRefGoogle Scholar
  9. 9.
    Cejna M, Loewe C, Schoder M, et al. (2002) MR angiography vs CT angiography in the follow-up of nitinol stent grafts in endoluminally treated aortic aneurysms. Eur Radiol 12:2443–2450PubMedGoogle Scholar
  10. 10.
    Haulon S, Lions C, McFadden EP, et al. (2001) Prospective evaluation of magnetic resonance imaging after endovascular treatment of infrarenal aortic aneurysms. Eur J Vasc Endovasc Surg 22:62–69PubMedCrossRefGoogle Scholar
  11. 11.
    Schwope RB, Alper HJ, Talenfeld AD, et al. (2007) MR angiography for patient surveillance after endovascular repair of abdominal aortic aneurysms. AJR Am J Roentgenol 188:W334–340PubMedCrossRefGoogle Scholar
  12. 12.
    Thurnher S, Cejna M (2002) Imaging of aortic stent-grafts and endoleaks. Radiol Clin North Am 40:799–833PubMedCrossRefGoogle Scholar
  13. 13.
    Dias NV, Ivancev K, Malina M, et al. (2004) Intra-aneurysm sac pressure measurements after endovascular aneurysm repair: Differences between shrinking, unchanged, and expanding aneurysms with and without endoleaks. J Vasc Surg 39:1229–1235PubMedCrossRefGoogle Scholar
  14. 14.
    Dias NV, Ivancev K, Malina M, et al. (2004) Direct intra-aneurysm sac pressure measurement using tip-pressure sensors: In vivo and in vitro evaluation. J Vasc Surg 40:711–716PubMedCrossRefGoogle Scholar
  15. 15.
    Baum RA, Carpenter JP, Cope C, et al. (2001) Aneurysm sac pressure measurements after endovascular repair of abdominal aortic aneurysms. J Vasc Surg 33:32–41PubMedCrossRefGoogle Scholar
  16. 16.
    Sonesson B, Dias N, Malina M, et al. (2003) Intra-aneurysm pressure measurements in successfully excluded abdominal aortic aneurysm after endovascular repair. J Vasc Surg 37:733–738PubMedCrossRefGoogle Scholar
  17. 17.
    Allen MG (2005) Micromachined endovascularly-implantable wireless aneurysm pressure sensors: from concept to clinic. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, Digest of Technical Papers, TRANSDUCERS ‘05:275–278Google Scholar
  18. 18.
    Ohki T, Ouriel K, Silveira PG, et al. (2007) Initial results of wireless pressure sensing for endovascular aneurysm repair: The APEX Trial—Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion. J Vasc Surg 45:236–242PubMedCrossRefGoogle Scholar
  19. 19.
    Ohki T, Yadav J, Gargiulo N, et al. (2003) Preliminary results of an implantable wireless aneurysm pressure sensor in a canine model: Will surveillance CT scan following EVAR become obsolete? J Endovasc Ther 10(Suppl):1–32Google Scholar
  20. 20.
    Chaer RA, Trocciola S, DeRubertis B, et al. (2006) Evaluation of the accuracy of a wireless pressure sensor in a canine model of retrograde-collateral (type II) endoleak and correlation with histologic analysis. J Vasc Surg 44:1306–1313PubMedCrossRefGoogle Scholar
  21. 21.
    Milner R, Ruurda JP, Blankensteijn JD (2004) Durability and validity of a remote, miniaturized pressure sensor in an animal model of abdominal aortic aneurysm. J Endovasc Ther 11:372–377PubMedCrossRefGoogle Scholar
  22. 22.
    Milner R, Verhagen HJ, Prinssen M, et al. (2004) Noninvasive intrasac pressure measurement and the influence of type 2 and type 3 endoleaks in an animal model of abdominal aortic aneurysm. Vascular 12:99–105PubMedCrossRefGoogle Scholar
  23. 23.
    Ellozy SH, Carroccio A, Lookstein RA, et al. (2006) Abdominal aortic aneurysm sac shrinkage after endovascular aneurysm repair: Correlation with chronic sac pressure measurement. J Vasc Surg 43:2–7PubMedCrossRefGoogle Scholar
  24. 24.
    Ellozy SH, Carroccio A, Lookstein RA, et al. (2004) First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms. J Vasc Surg 40:405–412PubMedCrossRefGoogle Scholar
  25. 25.
    Schlierf R, Görtz M, Schmitz-Rode T, et al. (2005) Pressure sensor to control the treatment of abdominal aorta aneurisms. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, Digest of Technical Papers, TRANSDUCERS ‘05:1656–1659Google Scholar
  26. 26.
    Springer F, Schlierf R, Pfeffer JG, et al. (2007) Detecting endoleaks after endovascular AAA repair with a minimally invasive, implantable, telemetric pressure sensor: An in vitro study. Eur Radiol 17:2589–2597PubMedCrossRefGoogle Scholar
  27. 27.
    Milner R, Kasirajan K, Chaikof EL (2006) Future of endograft surveillance. Semin Vasc Surg 19:75–82PubMedCrossRefGoogle Scholar
  28. 28.
    Carnero L, Milner R (2006) Aneurysm sac pressure measurement with a pressure sensor in endovascular aortic aneurysm repair. Vascular 14:264–269PubMedCrossRefGoogle Scholar
  29. 29.
    Sun Z (2006) Diagnostic value of color duplex ultrasonography in the follow-up of endovascular repair of abdominal aortic aneurysm. J Vasc Interv Radiol 17:759–764PubMedCrossRefGoogle Scholar
  30. 30.
    AbuRahma AF, Welch CA, Mullins BB, et al. (2005) Computed tomography versus color duplex ultrasound for surveillance of abdominal aortic stent-grafts. J Endovasc Ther 12:568–573PubMedCrossRefGoogle Scholar
  31. 31.
    Ashoke R, Brown LC, Rodway A, et al. (2005) Color duplex ultrasonography is insensitive for the detection of endoleak after aortic endografting: A systematic review. J Endovasc Ther 12:297–305PubMedCrossRefGoogle Scholar
  32. 32.
    Henao EA, Hodge MD, Felkai DD, et al. (2006) Contrast-enhanced Duplex surveillance after endovascular abdominal aortic aneurysm repair: Improved efficacy using a continuous infusion technique. J Vasc Surg 43:259–264; discussion 264PubMedCrossRefGoogle Scholar
  33. 33.
    Bendick PJ, Zelenock GB, Bove PG, et al. (2003) Duplex ultrasound imaging with an ultrasound contrast agent: The economic alternative to CT angiography for aortic stent graft surveillance. Vasc Endovascular Surg 37:165–170PubMedCrossRefGoogle Scholar
  34. 34.
    Pitton MB, Schweitzer H, Herber S, et al. (2005) MRI versus helical CT for endoleak detection after endovascular aneurysm repair. AJR Am J Roentgenol 185:1275–1281PubMedCrossRefGoogle Scholar
  35. 35.
    van der Laan MJ, Bartels LW, Viergever MA, et al. (2006) Computed tomography versus magnetic resonance imaging of endoleaks after EVAR. Eur J Vasc Endovasc Surg 32:361–365PubMedCrossRefGoogle Scholar
  36. 36.
    Krämer SC, Gorich J, Pamler R, et al. (2002) The contribution of MRI to the detection of endovascular aneurysm repair. Rofo 174:1285–1288PubMedGoogle Scholar
  37. 37.
    Chewning RH, Murphy KJ (2007) Gadolinium-based Contrast Media and the Development of Nephrogenic Systemic Fibrosis in Patients with Renal Insufficiency. J Vasc Interv Radiol 18:331–333PubMedCrossRefGoogle Scholar
  38. 38.
    High WA, Ayers RA, Chandler J, et al. (2007) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56:21–26PubMedCrossRefGoogle Scholar
  39. 39.
    Khurana A, Runge VM, Narayanan M, et al. (2007) Nephrogenic systemic fibrosis: a review of 6 cases temporally related to gadodiamide injection (Omniscan). Invest Radiol 42:139–145PubMedCrossRefGoogle Scholar
  40. 40.
    Pedersen M (2007) Safety update on the possible causal relationship between gadolinium-containing MRI agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 25:881–883PubMedCrossRefGoogle Scholar
  41. 41.
    Sadowski EA, Bennett LK, Chan MR, et al. (2007) Nephrogenic systemic fibrosis: Risk factors and incidence estimation. Radiology 243:148–157PubMedCrossRefGoogle Scholar
  42. 42.
    Fonseca MA, Allen M, Kroh J, et al. (2006) Flexible wireless passive pressure sensors for biomedical applications. Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, South Carolina, June 4–8, pp 37–42Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fabian Springer
    • 1
    Email author
  • Rolf W. Günther
    • 2
  • Thomas Schmitz-Rode
    • 1
  1. 1.Applied Medical EngineeringHelmholtz Institute for Biomedical Engineering, RWTH Aachen UniversityAachenGermany
  2. 2.Department of Diagnostic RadiologyUniversity Hospital RWTH Aachen UniversityAachenGermany

Personalised recommendations