CardioVascular and Interventional Radiology

, Volume 30, Issue 1, pp 26–33 | Cite as

Central Venous Access

  • Arul Ganeshan
  • Dinuke R. Warakaulle
  • Raman UberoiEmail author


Central venous access plays an important role in the management of an ever-increasing population of patients ranging from those that are critically ill to patients with difficult clinical access. Interventional radiologists are key in delivering this service and should be familiar with the wide range of techniques and catheters now available to them. A comprehensive description of these catheters with regard to indications, technical aspects of catheterization, success rates, and associated early and late complications, as well as a review of various published guidelines on central venous catheter insertion are given in this article.


Complication Interventional radiology 


  1. 1.
    Aubaniac R (1952) L’injection intraveinusesons-claviculaire. Advantages et technique. Press Med 60:1456Google Scholar
  2. 2.
    Broviac JW, Cole JJ, Scribner BH (1976) A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet 136(4):602–606Google Scholar
  3. 3.
    Hickman RO, Buckner CD, Clift RA (1979) A modified right atrial catheter for access to the venous system in marrow transplant recipients. Surg Gynecol Obstet 148(6):871–875PubMedGoogle Scholar
  4. 4.
    Bleichroder F (1912) Infra-arterielle Therapie. Klin/Wochenscher., Berlin, pp 1503–1505Google Scholar
  5. 5.
    Seneff MG (1991) Central venous catheters. In: Rippe JM, Irwin RS, Alpert JS, Fink MP (eds) Intensive Care Medicine, 2nd ed. Little Brown and Co., Boston, pp 17–37Google Scholar
  6. 6.
    Sofocleous CT, Schur I, Cooper SG, et al. (1998) Sonographically guided placement of peripherally inserted central venous catheters: review of 355 procedures. Am J Roentgenol 170(6):1613–1616Google Scholar
  7. 7.
    Loughran SC, Borzatta M (1995) Peripherally inserted central catheters: A report of 2506 catheter days. J Parenter Enteral Nutr 19(2):133–136Google Scholar
  8. 8.
    Schawab S, Besarab A, Beathard G (1997) NKF-DOGI clinical practice guidelines for vascular access. Am J Kidney Dis 30(Suppl):151–191Google Scholar
  9. 9.
    Timsit JF, Sebille V, Farkas JC, et al. (1996) Effect of subcutaneous tunneling on internal jugular catheter-related sepsis in critically ill patients: A prospective randomized multicenter study. JAMA 276(17):1416–1420PubMedCrossRefGoogle Scholar
  10. 10.
    Keohane PP, Jones BJ, Attrill H, et al. (1983) Effect of catheter tunnelling and a nutrition nurse on catheter sepsis during parenteral nutrition. A controlled trial. Lancet 2(8364):1388–1390PubMedCrossRefGoogle Scholar
  11. 11.
    de Cicco M, Panarello G, Chiaradia V (1989) Source and route of microbial colonisation of parenteral nutrition catheters. Lancet 2(8674):1258–1261PubMedGoogle Scholar
  12. 12.
    Funaki B, Szymski GX, Hackworth CA, et al. (1997) Radiologic placement of subcutaneous infusion chest ports for long-term central venous access. Am J Roentgenol 169(5):1431–1434Google Scholar
  13. 13.
    Tripathi M, Tripathi M (1996) Subclavian vein cannulation: An approach with definite landmarks. Ann Thorac Surg 61(1):238–240PubMedCrossRefGoogle Scholar
  14. 14.
    Moran SG, Peoples JB (1993) The deltopectoral triangle as a landmark for percutaneous infraclavicular cannulation of the subclavian vein. Angiology 44(9):683–686PubMedGoogle Scholar
  15. 15.
    Lameris JS, Post PJ, Zonderland HM (1990) Percutaneous placement of Hickman catheters: Comparison of sonographically guided and blind techniques. Am J Roentgenol 155(5):1097–1099Google Scholar
  16. 16.
    Hind D, Calvert N, McWilliams R, et al. (2003) Ultrasonic locating devices for central venous cannulation: meta-analysis. Br J Med 327(7411):361CrossRefGoogle Scholar
  17. 17.
    Merrer J, De Jonghe B, Golliot F, et al. (2001) French Catheter Study Group in Intensive Care. Complications of femoral and subclavian venous catheterization in critically ill patients: A randomized controlled trial. JAMA 286(6):700–707PubMedCrossRefGoogle Scholar
  18. 18.
    Funaki B (2002) Central venous access: A primer for the diagnostic radiologist. Am J Roentgenol 179(2):309–318Google Scholar
  19. 19.
    Sznajder JI, Zveibil FR, Bitterman H (1986) Central vein catheterization. Failure and complication rates by three percutaneous approaches. Arch Intern Med 146(2):259–261PubMedCrossRefGoogle Scholar
  20. 20.
    Iovino F, Pittiruti M, Buononato M (2001) Central venous catheterization: Complications of different placements. Ann Chir 126(10):1001–1006 (in French)PubMedCrossRefGoogle Scholar
  21. 21.
    Seneff MG (1987) Central venous catheterization: A comprehensive review, Part 2. J Intensive Care Med 2218–2223Google Scholar
  22. 22.
    McGee DC, Gould MK (2003) Preventing complications of central venous catheterization. N Engl J Med 348(12):1123–1133PubMedCrossRefGoogle Scholar
  23. 23.
    Lefrant JY, Muller L, De La Coussaye JE (2002) Risk factors of failure and immediate complication of subclavian vein catheterization in critically ill patients. Intensive Care Med 28(8):1036–1041PubMedCrossRefGoogle Scholar
  24. 24.
    Eckhardt WF, Iaconetti J, Kwon JS, et al. (1996) Inadvertent carotid artery cannulation during pulmonary artery catheter insertion. J Cardiothorac Vasc Anesth 10(2):283–290PubMedCrossRefGoogle Scholar
  25. 25.
    Asteri T, Tsagaropoulou I, Vasiliadis K (2002) Beware Swan-Ganz complications. Perioperative management. J Cardiovasc Surg (Torino) 43(4):467–470Google Scholar
  26. 26.
    Teichgraber UK, Gebauer B, Benter T (2003) Central venous access catheters: Radiological management of complications. Cardiovasc Intervent Radiol 26(4):321–333PubMedGoogle Scholar
  27. 27.
    McGee WT, Ackerman BL, Rouben LR (1993) Accurate placement of central venous catheters: A prospective, randomized, multicenter trial. Crit Care Med 21(8):1118–1123PubMedCrossRefGoogle Scholar
  28. 28.
    Peres PW (1980) Positioning central venous catheters: A prospective survey. Anaesth Intensive Care 18(4):536–539Google Scholar
  29. 29.
    Gann M Jr, Sardi A (2003) Improved results using ultrasound guidance for central venous access. Am Surg 69(12):1104–1107PubMedGoogle Scholar
  30. 30.
    Craft PS, May J, Dorigo A, et al. (1996) Hickman catheters: Left-sided insertion, male gender, and obesity are associated with an increased risk of complications. Aust NZ J Med 26(1):33–39Google Scholar
  31. 31.
    Pithie AD, Pennington CR (1987) The incidence, aetiology and management of central venous thrombosis during parenteral nutrition. J Parenter Enteral Nutur 12(6):613–614Google Scholar
  32. 32.
    Boardman P, Hughes JP (1998) Radiological evaluation and management of malfunctioning central venous catheters. Clin Radiol 53(1):10–16PubMedCrossRefGoogle Scholar
  33. 33.
    Ruesch S, Walder B, Tramer MR (2002) Complications of central venous catheters: Internal jugular versus subclavian access—A systematic review. Crit Care Med 30(2):454–460PubMedCrossRefGoogle Scholar
  34. 34.
    Ryan JA Jr, Abel RM, Abbott WM, et al. (1974) Catheter complications in total parenteral nutrition. A prospective study of 200 consecutive patients. N Engl J Med 290(14):757–761PubMedCrossRefGoogle Scholar
  35. 35.
    Pittet D, Tarara D, Wenzel RP, et al. (1994) Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271(20):1598–1601PubMedCrossRefGoogle Scholar
  36. 36.
    Pearson ML (1996) Guideline for prevention of intravascular device-related infections. Part I. Intravascular device-related infections: An overview. The Hospital Infection Control Practices Advisory Committee. Am J Infect Control 24(4):262–277PubMedCrossRefGoogle Scholar
  37. 37.
    Randolph AG, Cook DJ, Gonzales CA, et al. (1998) Tunneling short-term central venous catheters to prevent catheter-related infection: A meta-analysis of randomized, controlled trials. Crit Care Med 26(8):1452–1457PubMedCrossRefGoogle Scholar
  38. 38.
    Ng PK, Ault MJ, Ellrodt AG (1997) Peripherally inserted central catheters in general medicine. Mayo Clin Proc 72(3):225–233PubMedCrossRefGoogle Scholar
  39. 39.
    Richet H, Hubert B, Nitemberg G, et al. (1990) Prospective multicenter study of vascular-catheter-related complications and risk factors for positive central-catheter cultures in intensive care unit patients. J Clin Microbiol 28(11):2520–2525PubMedGoogle Scholar
  40. 40.
    Goetz AM, Wagener MM, Miller JM (1998) Risk of infection due to central venous catheters: Effect of site of placement and catheter type. Infect Control Hosp Epidemiol 19(11):842–845PubMedGoogle Scholar
  41. 41.
    Arnow PM, Quimosing EM, Beach M (1993) Consequences of intravascular catheter sepsis. Clin Infect Dis 16(6):778–784PubMedGoogle Scholar
  42. 42.
    Kumar A, Brar SS, Murray DL, et al. (1988) Central venous catheter infections in pediatric patients—in a community hospital. Infection 16(2):86–90PubMedCrossRefGoogle Scholar
  43. 43.
    Raad I, Davis S, Khan A, et al. (1992) Impact of central venous catheter removal on the recurrence of catheter-related coagulase-negative staphylococcal bacteremia. Infect Control Hosp Epidemiol 13(4):215–221PubMedCrossRefGoogle Scholar
  44. 44.
    Mermel LA, Farr BM, Sherertz RJ, et al. (2001) Infectious Diseases Society of America, American College of Critical Care Medicine, Society for Healthcare Epidemiology of America. Guidelines for the management of intravascular catheter-related infections. J Intraven Nurs 180–205Google Scholar
  45. 45.
    Elting LS, Bodey GP (1990) Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: Increasing incidence of catheter-related infections. Medicine (Baltimore) 69(5):296–306Google Scholar
  46. 46.
    Pratt RJ, Pellowe C, Loveday HP, et al. (2001) Department of Health (England). The Epic Project: Developing national evidence-based guidelines for preventing healthcare associated infections. Phase I: Guidelines for preventing hospital-acquired infections. J Hosp Infect 47(Suppl.):S3–S82PubMedCrossRefGoogle Scholar
  47. 47.
    Raad I, Darouiche R, Dupuis J, et al. (1997) Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 127(4):267–274PubMedGoogle Scholar
  48. 48.
    Maki DG, Stolz SM, Wheeler S (1997) Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med 127(4):257–266PubMedGoogle Scholar
  49. 49.
    Raad II, Hachem RY, Abi-Said D (1998) A prospective crossover randomized trial of novobiocin and rifampin prophylaxis for the prevention of intravascular catheter infections in cancer patients treated with interleukin-2. Cancer 82(2):403–411PubMedCrossRefGoogle Scholar
  50. 50.
    Managing bloodstream infections associated with intravascular catheters (2001) DTB 39:75–80Google Scholar
  51. 51.
    Schillinger F, Schillinger D, Montagnac R (1991) Post catheterisation vein stenosis in haemodialysis: Comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 6(10):722–724PubMedGoogle Scholar
  52. 52.
    Gray WJ, Bell WR (1990) Fibrinolytic agents in the treatment of thrombotic disorders. Semin Oncol 17(2):228–237PubMedGoogle Scholar
  53. 53.
    Merrer J, De Jonghe B, Golliot F (2001) French Catheter Study Group in Intensive Care. Complications of femoral and subclavian venous catheterization in critically ill patients: A randomized controlled trial. JAMA 286(6):700–707PubMedCrossRefGoogle Scholar
  54. 54.
    Timsit JF, Farkas JC, Boyer JM, et al. (1998) Central vein catheter-related thrombosis in intensive care patients: Incidence, risks factors, and relationship with catheter-related sepsis. Chest 114(1):207–213PubMedGoogle Scholar
  55. 55.
    Bern MM, Lokich JJ, Wallach SR, et al. (1990) Very low doses of warfarin can prevent thrombosis in central venous catheters. A randomized prospective trial. Ann Intern Med 112(6):423–428PubMedGoogle Scholar
  56. 56.
    Randolph AG, Cook DJ, Gonzales CA, et al. (1998) Benefit of heparin in central venous and pulmonary artery catheters: A meta-analysis of randomized controlled trials. Chest 113(1):165–171PubMedGoogle Scholar
  57. 57.
    Randolph AG, Cook DJ, Gonzales CA (1998) Benefit of heparin in peripheral venous and arterial catheters: Systematic review and meta-analysis of randomised controlled trials. Br Med J 316(7136):969–975Google Scholar
  58. 58.
    David SJ, Thompson JS, Edney JA (1984) Insertion of Hickman catheters in total parenteral nutrition: A prospective study of 200 consecutive patients. Am Surg 50:673–676Google Scholar
  59. 59.
    Farrell J, Gellens M (1997) Ultrasound-guided cannulation versus the landmark-guided technique for acute haemodialysis access. Nephrol Dial Transplant 12(6):1234–1237PubMedCrossRefGoogle Scholar
  60. 60.
    Adam A (1995) Insertion of long term central venous catheters: time for a new look. Br Med J 311(7001):341–342Google Scholar
  61. 61.
    Reeves AR, Seshardri R, Trerotola S (2001) Recent trends in central venous catheter placement: A comparison of interventional radiology with other specialties. J Vasc Intervent Radiol 12:1211–1214Google Scholar
  62. 62.
    Polderman KH, Girbes AR (2002) Central venous catheter use. Part 2: Infectious complications. Intensive Care Med:28(1):18–28PubMedCrossRefGoogle Scholar
  63. 63.
    Segura M, Alvarez-Lerma F, Tellado JM, et al. (1996) A clinical trial on the prevention of catheter-related sepsis using a new hub model. Ann Surg. 4:363–369CrossRefGoogle Scholar
  64. 64.
    Yebenes JC, Vidaur L, Serra-Prat M, et al. (2004) Prevention of catheter-related bloodstream infection in critically ill patients using a disinfectable, needle-free connector: A randomized controlled trial. Am J Infect Control 32(5):291–295PubMedCrossRefGoogle Scholar
  65. 65.
    Maki DG, Mermel LA, Kulger DM, et al. (2000) The efficacy of a chlorhexidine-mpregnated sponge (biopath) for the prevention of intravascular catheter related infection—A prospective randomized controlled multicentered trial. Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy (Toronto). American Society for Microbiology, Washington, DC, p 422Google Scholar
  66. 66.
    SchearsGJ, Liebeig C, Frey AM, et al. (2001) Statlock catheters securement device significantly reduces central venous catheters complications (Abstract). National Patients Safety Foundation Compendium on Best Practice. Joint Commission Of Accreditation of Healthcare Organization, ChicagoGoogle Scholar
  67. 67.
    Yamamoto AJ,Solomon JA, Solen MC, et al. (2001) Sutureless securment devices reduce complications of peripherally inserted catheters (Abstract). Programs and abstracts of the 26th Annual Scientific Meeting of the Society of the Cardiovascular and Interventional Radiologists, San Antonio, TXGoogle Scholar
  68. 68.
    Messing B, Peitra-Cohen S, Debure A, et al. (1988) Antibiotic-lock technique: A new approach to optimal therapy for catheter-related sepsis in home-parenteral nutrition patients. J Parenter Enteral Nutr 12(2):185–189CrossRefGoogle Scholar
  69. 69.
    Liu WK, Tebbs SE, Byrne PO, et al. (1993) The effects of electric current on bacteria colonising intravenous catheters. J Infect 27(3):261–269PubMedCrossRefGoogle Scholar
  70. 70.
    Barton AJ, Danek G, Johns P, et al. (1998) Improving patient outcomes through CQI: vascular access planning Nurs Care Qual 13(2):77–85Google Scholar
  71. 71.
    Ngo A, Murphy S (2005) A theory-based intervention to improve nurses’ knowledge, self-efficacy, and skills to reduce PICC occlusion. J Infus Nurs 28(3):173–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Arul Ganeshan
    • 1
  • Dinuke R. Warakaulle
    • 1
  • Raman Uberoi
    • 1
    Email author
  1. 1.Department of RadiologyJohn Radcliffe HospitalOxfordUK

Personalised recommendations