In Vitro Comparison of Self-Expanding Versus Balloon-Expandable Stents in a Human Ex Vivo Model

  • Lars GrenacherEmail author
  • Stefan RohdeEmail author
  • Ellen Gänger
  • Jochen Deutsch
  • Günter W. Kauffmann
  • Götz M. Richter


The objective was to compare the radial strength and expansile precision of self-expanding stents and balloon-expandable stents in a human cadaver bifurcation model. Seven different self-expanding (LUMINEXX, JOSTENT SelfX, JOSTENT SelfX hrf, Sinus-Repo, Sinus SuperFlex, Easy Wallstent, SMART) and four different balloon-expandable stent models (Palmaz, Sinus Stent, SAXX Medium, JOSTENT peripheral), each type 10 stents (total n = 110 stents) were implanted into the common iliac arteries of human cadaver corpses. The maximum stent diameter was 10 mm for all models. After stent implantation, the specimens were filled with silicone caoutchouc. After 24 h, the vascular walls including the stents were removed from the hardened casts. Diameters were taken and the weight of the cast cylinders was measured in air and in purified water to calculate the volume of the bodies (according to Archimedes Law) as a relative but precise degree for the radial strength of the implanted stents. The cylindrical casts of the self-expanding stents showed lower mean diameters (8.2 ± 1.0 mm) and mean volumes (0.60 ± 0.14 ml/cm) than in the balloon-expandable stent group (10.1 ± 0.3 mm and 0.71 ± 0.04 ml/cm, respectively; p < 0.01). The nominal maximum diameter of 10 mm was not achieved in any of the self-expanding stents, but this was achieved in more than 70% (29/40) of the balloon-expandable stent specimens (p < 0.05). The variation between achieved volumes was significantly larger in self-expanding (range: 0.23–0.78 ml/cm) than in balloon-expandable stents (range: 0.66–0.81 ml/cm; p < 0.05). Self-expanding stents presented considerably lower radial expansion force and lower degree of precision than balloon-expandable stents.


Stents Self-expanding Balloon-expandable Radial expansion force Human ex vivo model 


  1. 1.
    Dyet JF, Watts WG, Ettles DF, et al. (2000) Mechanical properties of metallic stents: how do these properties influence choice of stent for specific lesions? Cardiovasc Intervent Radiol 23:47–54CrossRefPubMedGoogle Scholar
  2. 2.
    Lugmayr HF, Holzer H, Kastner M, et al. (2002) Treatment of complex arterioslerotic lesions with nitinol stents in the superficial femoral and popliteal arteries: a midterm follow-up. Radiology 222:37–43PubMedGoogle Scholar
  3. 3.
    Technisches Komitee CEN/TC 285 (1998) Nichtaktive chirurgische Implantate. Besondere Anforderungen an Herz- und Gefäßimplantate, Teil 3: Endovaskuläre Implantate. Deutsche Fassung EN 12006-3. Beuth,. BerlinGoogle Scholar
  4. 4.
    Lossef SV, Lutz RJ, Mundorf J, et al. (1994) Comparison of mechanical deformation properties of metallic stents with use of stress-strain analysis. J Vasc Intervent Radiol 5:341–349Google Scholar
  5. 5.
    Schrader SC, Beyar R (1998) Evaluation of the compressive mechanical properties of endoluminal metal stents. Cathet Cardiovasc Diagn 44:179–187CrossRefPubMedGoogle Scholar
  6. 6.
    Schröder B, Dück R, Kopf M (1998) Untersuchungen zu den mechanischen Eigenschaften von metallischen Gefäßimplantaten (Stents). Biomed Tech (Berl) 43(suppl):436–437Google Scholar
  7. 7.
    Albrecht D, Kaspers S, Füssl R, et al. (1996) Coronary plaque morphology affects stent deployment: assessment by intracoronary ultrasound. Cathet Cardiovasc Diagn 38:229–235CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann R, Mintz GS, Popma JJ, et al. (1998) Treatment of calcified coronary lesions with Palmaz-Schatz stents. Eur Heart J 19:1224–1231PubMedGoogle Scholar
  9. 9.
    Schwarzenberg H, Müller-Hülsbeck S, Glüer CC, et al. (1998) Evaluation of maximum neointima proliferation and plaque morphology in iliac self-expanding nitinol stents with intravascular sonography. Am J Roentgenol 171:1627–1630Google Scholar
  10. 10.
    Grenacher L, Deutsch J, Lubienski A, et al. (2003) Resistance to hoop stress in balloon-expandable stents. Evaluation in an ex vivo model. Invest Radiol 38:65–72Google Scholar
  11. 11.
    Grenacher L, Gänger E, Lubienski A, et al. (2004) Experimental functional analysis of self-expanding stents using a new developed ex vivo model. Invest Radiol 39:374–83PubMedGoogle Scholar
  12. 12.
    Thiel W (1992) Die Konservierung ganzer Leichen in natürlichen Farben. Ann Anat 174:185–195PubMedGoogle Scholar
  13. 13.
    Migliavacca F, Petrini L, Massarotti P, et al. (2004) Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech Model Mechanobiol 2:205–217CrossRefPubMedGoogle Scholar
  14. 14.
    Duda SH, Wiskirchen J, Tepe G, et al. (2000) Physical properties of endovascular stents: an experimental comparison. J Vasc Intervent Radiol 11:645–654Google Scholar
  15. 15.
    Flueckiger F, Sternthal H, Klein GE, et al. (1994) Strength, elasticity, and plasticity of expandable metal stents: in vitro studies with three types of stress. J Vasc Intervent Radiol 5:745–750CrossRefGoogle Scholar
  16. 16.
    Schrader SC, Beyar R, Kühler M, et al. (1998) Experimentelle Untersuchung der radialen Verformbarkeit von Stents. Biomed Tech (Berl) 43(suppl):512–513Google Scholar
  17. 17.
    Yamamoto Y, Brown DL, Ischinger TA, et al. (1999) Effect of stent design on reduction of elastic recoil: a comparison via quantitative intravascular ultrasound. Cathet Cardiovasc Intervent 47:251–257CrossRefGoogle Scholar
  18. 18.
    Rieu R, Barragan P, Masson C, et al. (1999) Radial force of coronary stents: a comparative analysis. Cathet Cardiovasc Intervent 46:380–391CrossRefGoogle Scholar
  19. 19.
    Schmitz KP, Behrend D, Behrens P, et al. (1997) Experimentelle Überprüfung des Aufweitverhaltens von ballonexpandierbaren Koronarstents. Biomed Tech (Berl) 42(suppl):203–204Google Scholar
  20. 20.
    Schmitz KP, Behrend D, Behrens P, et al. (1998) Wechselwirkung von Radialfestigkeit und Flexibilität von Koronarstents. Biomed Tech (Berl) 43(suppl):376–377Google Scholar
  21. 21.
    Wehrmeyer B, Kuhn FP (1993) Experimentelle Untersuchungen zur Druckstabilität vaskulärer Endoprothesen. Fortschr Röntgenstr 158:242–246Google Scholar
  22. 22.
    Pörner T, Voelker W, Teubner J, et al. (1997) Quantifizierung des Recoils von Koronarstents: eine in-vitro-Untersuchung an Koronarstenosemodellen mittels hochauflösender Röntgentechnik. Biomed Tech (Berl) 42(suppl):205–206Google Scholar
  23. 23.
    Crowe D, O´Loughlin K, Knox L, et al. (1995) Morphologic change in rabbit femoral arteries induced by storage at four degrees Celsius and by subsequent reperfusion. J Vasc Surg 22:769–779CrossRefPubMedGoogle Scholar
  24. 24.
    Laerum F, Vlodaver Z, Castaneda-Zuniga WR, et al. (1982) The mechanism of angioplasty. Fortschr Röntgenstr 136:573–576CrossRefGoogle Scholar
  25. 25.
    Manninen HI, Räsänen HT, Vanninen RL, et al. (1999) Stent placement versus percutaneous transluminal angioplasty of human carotid arteries in cadavers in situ: distal embolization and findings at intravascular US, MR imaging, and histopathologic analysis. Radiology 212:483-492PubMedGoogle Scholar
  26. 26.
    Schatz RA, Tio FO, Palmaz JC (1987) Balloon-expandable intravascular stents in diseased human cadaver coronary arteries. Circulation 76(suppl 4):4–26Google Scholar
  27. 27.
    Palmaz JC (1988) Balloon-expandable intravascular stent. Am J Roentgenol 150:1263–1269Google Scholar
  28. 28.
    Cha SH, Han MH, Choi YH, et al. (2003) Vascular responses in normal canine carotid arteries: comparison between various self-expanding stents of the same unconstrained size. Invest Raiol 38:95–101Google Scholar
  29. 29.
    Yu ZX, Tamai H, Kyo E, et al. (2002) Comparison of the self-expanding Radius stent and the balloon-expandable Multilink stent for elective treatment of coronary stenoses: a serial analysis by intravascular ultrasound. Catheteter Cardiovasc Intervent 65(1):40–45Google Scholar
  30. 30.
    Han RO, Schwartz RS, Kobayashi Y, et al. (2001) Stent Comparative Restenosis (SCORES) Trial Investigators. Comparison of self-expanding and balloon-expandable stents for the reduction of restenosis. Am J Cardiol 88(3):253–259CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Lars Grenacher
    • 1
    Email author
  • Stefan Rohde
    • 1
    Email author
  • Ellen Gänger
    • 1
  • Jochen Deutsch
    • 1
  • Günter W. Kauffmann
    • 1
  • Götz M. Richter
    • 1
  1. 1.Department of Diagnostic RadiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations