Advertisement

Physics and Chemistry of Minerals

, Volume 24, Issue 4, pp 243–253 | Cite as

The temperature dependence of the crystal structure of berlinite, a quartz-type form of AlPO4

  • Y. Muraoka
  • K. Kihara
ORIGINAL PAPER

Abstract

 The temperature dependence of atomic positions, mean-square displacements and probability density functions in a synthetic specimen of berlinite was analyzed using X-ray single crystal data measured at fourteen values of temperature. The characteristic features and the temperature dependence of the structure of berlinite were found to be quite similar to those of quartz, in detail. With increasing temperature, the equilibrium position of an atom, if expressed in fractional coordinates, appears to move steadily toward its β-position along a straight line, and finally attain the β-phase positions after abrupt displacements in a narrow temperature range around 583 °C. The temperature dependence of the displacements of atoms from the corresponding high-symmetry β-positions, in α-berlinite, is well fitted with a classical Landau type expression of first-order phase transitions.

The highly anisotropic mean square displacements, 〈u2〉, of O atoms increase with increasing temperature, especially in a narrow range just below the α–β transition, in the directions nearly perpendicular to the librating Al-O-P bonds, attaining a local maximum of 0.115–0.117 Å2 just above the transition point. With varying temperature, the principal axes for the O atoms change their directions smoothly toward those of the high temperature phase, while the axis with the largest 〈u2〉 of the Al or P thermal ellipsoid remains in 〈100〉. These diffraction results are interpreted in terms of displacive structure transition involving both the ordered α- and β-forms. The Al–O and P–O bond distances are nearly constant around 1.73 and 1.53 Å, respectively, through the experimental range of temperature.

Keywords

Probability Density Function Atomic Position High Temperature Phase Experimental Range Narrow Temperature Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Y. Muraoka
    • 1
  • K. Kihara
    • 1
  1. 1.Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakuma, Kanazawa 920, JapanJP

Personalised recommendations