Physics and Chemistry of Minerals

, Volume 46, Issue 10, pp 959–975 | Cite as

Defects in deformation twins in plagioclase

  • Dongyue Xie
  • Greg Hirth
  • J. P. Hirth
  • Jian WangEmail author
Original Paper


The topological model is applied to analyze defects associated with albite and pericline twins in plagioclase. Twin growth occurs by the motion of twinning disconnections. The same twinning disconnections are shown to produce both twins. The topological model is used to predict the atomic details of the disconnections. High-resolution transmission electron microscopy results verify the model predictions. Early work on the possibility of pseudo-twinning is also discussed.


Twinning Mineral Structural group Dislocations Disconnections Topological model 



The authors are pleased to acknowledge helpful contributions by R.C. Pond. Xie and Wang acknowledge support from the US National Science Foundation (NSF) (CMMI-1661686). Greg Hirth acknowledges support from NSF: EAR-1624178.


  1. Anderson PM, Hirth JP, Lothe J (2017) Theory of dislocations, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  2. At Santoro, Mighell A (1970) Determination of reduced cells. Acta Crystallogr Sect A Cryst Phys Diffract Theor General Crystallogr 26:124–127Google Scholar
  3. Bevis M, Crocker A (1969) Twinning modes in lattices. Proc R Soc Lond A 313:509–529Google Scholar
  4. Bilby BA, Crocker A (1965) The theory of the crystallography of deformation twinning. Proc R Soc Lond A 288:240–255Google Scholar
  5. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1–157Google Scholar
  6. Frank F (1951) Crystal dislocations-elementary concepts and definitions. Phil Mag 42:809–819Google Scholar
  7. Frank F (1953) A note on twinning in alpha-uranium. Acta Metall 1:71–74Google Scholar
  8. Fullman R, Fisher J (1951) Formation of annealing twins during grain growth. J Appl Phys 22:1350–1355Google Scholar
  9. Gong M, Hirth JP, Liu Y, Shen Y, Wang J (2017) Interface structures and twinning mechanisms of twins in hexagonal metals. Mater Res Lett 5:449–464Google Scholar
  10. Gong M, Xu S, Xie D, Wang S, Wang J, Schuman C, Lecomte J-S (2019) Steps and \(\left\{{\text{11}}\overline{{\text{2}}} {\text{1}}\right\}\) secondary twinning associated with \(\left\{{\text{112}}\overline{{\text{2}}}\right\}\) twin in titanium. Acta Mater 164:776–787Google Scholar
  11. Hahn T, Klapper H (2006) 3.3 Twinning of crystals. International tables for crystallography D. Springer, Netherlands, pp 393–448Google Scholar
  12. Han J, Thomas SL, Srolovitz DJ (2018) Grain-boundary kinetics: a unified approach. Prog Mater Sci 98:386–476Google Scholar
  13. Hansen LN, Warren JM (2016) Quantifying the effect of pyroxene on deformation of peridotite in a natural shear zone. J Geophys Res Solid Earth 120:2717–2738Google Scholar
  14. Hardouin Duparc O (2017) A review of some elements for the history of mechanical twinning centred on its German origins until Otto Mügge’s K 1 and K 2 invariant plane notation. J Mater Sci 52:4182–4196Google Scholar
  15. Harlow GE, Brown GE (1980) Low albite- an X-ray and neutron diffraction study. Am Miner 65:986Google Scholar
  16. Hartman NW, Bertoline GR, Wiebe EN, Ross WA (2008) Technical graphics communication. McGraw-Hill Education, New York, pp 577–578Google Scholar
  17. Hazzledine P, Pirouz P (1993) Synchroshear transformations in Laves phases. Scr Metall Mater 28:1277–1282Google Scholar
  18. Hirth J, Pond R, Hoagland R, Liu X-Y, Wang J (2013) Interface defects, reference spaces and the Frank–Bilby equation. Prog Mater Sci 58:749–823Google Scholar
  19. Hirth J, Wang J, Tomé C (2016) Disconnections and other defects associated with twin interfaces. Prog Mater Sci 83:417–471Google Scholar
  20. Hirth JP, Wang J, Hirth G (2019) A topological model for defects and interfaces in complex crystal structures. Am Mineral 104:966–972Google Scholar
  21. Horst W, Tagai T, Korekawa M, Jagodzinski H (1981) Modulated structure of a plagiociase angz: theory and structure determination. Zeitschrift für Kristallographie Crystall Mater 157:233–250Google Scholar
  22. Kelly A, Knowles KM (2012) Crystallography and crystal defects. Wiley, New YorkGoogle Scholar
  23. Khater H, Serra A, Pond R (2013) Atomic shearing and shuffling accompanying the motion of twinning disconnections in zirconium. Phil Mag 93:1279–1298Google Scholar
  24. Kronberg M (1957) Plastic deformation of single crystals of sapphire: basal slip and twinning. Acta Metall 5:507–524Google Scholar
  25. Laves F (1952a) Phase relations of the alkali feldspars. II. The stable and pseudo-stable phase relations in the alkali feldspar system. J Geol 60:549–574Google Scholar
  26. Laves F (1952b) Phase relations of the alkali feldspars: I. Introductory remarks. J Geol 60:436–450Google Scholar
  27. Laves F, MacKenzie W, Zussman J (1974) Domain and deformation textures in plagioclase and their investigation by photo-emission-electron-microscopy (PEEM) and by transmission electron microscopy. Manchester University Press, Manchester, pp 536–550Google Scholar
  28. Li B, Knowles KM (2013) Molecular dynamics simulation of albite twinning and pericline twinning in low albite. Modell Simul Mater Sci Eng 21:055012Google Scholar
  29. McLaren A, Marshall D (1974) Transmission electron microscope study of the domain structures associated with the b-, c-, d-, e-and f-reflections in plagioclase feldspars. Contrib Miner Petrol 44:237–249Google Scholar
  30. Mehl L, Hirth G (2008) Plagioclase preferred orientation in layered mylonites: evaluation of flow laws for the lower crust. J Geop Res 113:B05202Google Scholar
  31. Miranda EA, Hirth G, John BE (2016) Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase. J Struct Geol 92:30–45Google Scholar
  32. Mügge O (1889) Ueber homogene Deformationen (einfache Schiebungen) an den triklinen Doppelsalzen BaCdCl4. 4aq. Neues Jahrbuch für Mineral Geol Palaeontol Beilage 6:274–304Google Scholar
  33. Nicolas A, Bouchez JL, Blaise J, Poirier JP (1977) Geological aspects of deformation in continental shear zones. Tectonophysics 42:55–73Google Scholar
  34. Niggli P (1928) Krystallographische und strukturtheoretische Grundbegriffe. Akademische Verlagsgesellschaft MBH, TübingenGoogle Scholar
  35. Poirier J (1981) On the kinetics of olivine-spinel transition. Phys Earth Planet Inter 26:179–187Google Scholar
  36. Pond R, Hirth J (2018) Topological model of type II deformation twinning. Acta Mater 151:229–242Google Scholar
  37. Pond R, Serra A, Bacon D (1999) Dislocations in interfaces in the hcp metals—II. Mechanisms of defect mobility under stress. Acta Mater 47:1441–1453Google Scholar
  38. Pond R, Ma X, Chai Y, Hirth J (2007) Topological modelling of martensitic transformations. Dislocations Solids 13:225–262Google Scholar
  39. Pond RC, Hirth J, Serra A, Bacon D (2016) Atomic displacements accompanying deformation twinning: shears and shuffles. Mater Res Lett 4:185–190Google Scholar
  40. Pond RC, Hirth JP, Knowles KM (2019) Topological model of type II deformation twinning in NiTi martensite. Phil Mag 99:1619–1634Google Scholar
  41. Rowe KJ, Rutter EH (1990) Palaeostress estimation using calcite twinning: experimental calibration and application to nature. J Struct Geol 12(1):1–17Google Scholar
  42. Smith JV (1974) Feldspar minerals: crystal structure and physical properties, vol 1. Springer, New YorkGoogle Scholar
  43. Smith JV, Brown WL (2012) Feldspar minerals: crystal structures, physical, chemical, and microtextural properties, vol 1. Springer, BerlinGoogle Scholar
  44. Stünitz H, Fitz Gerald J D, Tullis J (2003) Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 372 (3–4):215–233Google Scholar
  45. Tullis J, Dell’Angelo LN, Yund RA (1998) Formation of ductile shear zones along former faults in feldspathic rocks. In: Snoke AW, Tullis J, Todd VR (eds) Fault-related rocks: a photographic atlas. Princeton Univ Press, Princeton, pp 252–253Google Scholar
  46. Van Swygenhoven H, Derlet P (2008) Atomistic simulations of dislocations in FCC metallic nanocrystalline materials. Dislocations Solids Tribute FRN Nabarro 14:1Google Scholar
  47. Wang J, Hirth JP, Tomé CN (2009) Twinning nucleation mechanisms in hexagonal close-packed crystals. Acta Mater 57:5521–5530Google Scholar
  48. Wang J, Yu Q, Jiang Y, Beyerlein IJ (2014) Twinning-associated boundaries in hexagonal close-packed metals. JOM 66:95–101Google Scholar
  49. Warren JM, Hirth JG (2006) Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet Sci Lett 248:438–450Google Scholar
  50. Wenk H-R, Bulakh A (2016) Minerals: their constitution and origin. Cambridge University Press, CambridgeGoogle Scholar
  51. Xu S, Zhou P, Liu G, Xiao D, Gong M, Wang J (2019) Shock-induced two types of \(\left({\text{101}}\overline{{\text{2}}}\right)\) sequential twinning in titanium. Acta Mater 165:547–560Google Scholar
  52. Yu Q, Wang J, Jiang Y, McCabe RJ, Li N, Tomé CN (2014a) Twin–twin interactions in magnesium. Acta Mater 77:28–42Google Scholar
  53. Yu Q, Wang J, Jiang Y, McCabe RJ, Tomé CN (2014b) Co-zone \(\left({\text{1}}\overline{{\text{0}}} {\text{12}}\right)\) twin interaction in magnesium single crystal. Mater Res Lett 2:82–88Google Scholar
  54. Zhu Y, Narayan J, Hirth J, Mahajan S, Wu X, Liao X (2009) Formation of single and multiple deformation twins in nanocrystalline FCC metals. Acta Mater 57:3763–3770Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Dongyue Xie
    • 1
  • Greg Hirth
    • 2
  • J. P. Hirth
    • 3
  • Jian Wang
    • 1
    Email author
  1. 1.Mechanical and Materials Engineering DepartmentUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Geological SciencesBrown UniversityProvidenceUSA
  3. 3.Ohio State and Washington State UniversitiesGreen ValleyUSA

Personalised recommendations