Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 10, pp 921–933 | Cite as

Mechanical and structural properties of radiation-damaged allanite-(Ce) and the effects of thermal annealing

  • Claudia E. ReissnerEmail author
  • Ulrich Bismayer
  • Daniel Kern
  • Michael Reissner
  • Sulgiye Park
  • Jiaming Zhang
  • Rodney C. Ewing
  • Anna Shelyug
  • Alexandra Navrotsky
  • Carsten Paulmann
  • Radek Škoda
  • Lee A. Groat
  • Herbert Pöllmann
  • Tobias BeirauEmail author
Original Paper

Abstract

The onset of thermally induced, heterogeneous structural reorganization of highly radiation-damaged allanite-(Ce) begins at temperatures below 700 K. Three strongly disordered allanite samples (S74 20414: ~ 0.55 wt% ThO2, 22.1 wt% REE oxides, and maximum radiation dose 3.5 × 1018 α-decay/g; LB-1: ~1.18 wt% ThO2, 19.4 wt% REE oxides, and maximum radiation dose 2.0 × 1019 α-decay/g; R1: ~ 1.6 wt% ThO2, 19.7 wt% REE oxides, and maximum radiation dose 2.6 × 1018 α-decay/g) were step-wise annealed to 1000 K in air. Using orientation-dependent nanoindentation, synchrotron single-crystal X-ray diffraction (synchrotron XRD), X-ray powder diffraction (powder XRD), differential scanning calorimetry and thermogravimetric analysis (DSC/TG), mass spectrometry (MS), 57Fe Mössbauer spectroscopy and high-resolution transmission electron microscopy (HRTEM), a comprehensive understanding of the structural processes involved in the annealing was obtained. As a result of the overall increasing structural order, a general increase of hardness (pristine samples: 8.2–9.3 GPa, after annealing at 1000 K: 10.2–12 GPa) and elastic modulus (pristine samples: 115–127 GPa, after annealing at 1000 K: 126–137 GPa) occurred. The initially heterogeneous recrystallization process is accompanied by oxidation of iron, the related loss of hydrogen and induced stress fields in the bulk material, which cause internal and surface cracking after step-wise annealing from 800 to 1000 K. HRTEM imaging of the pristine material shows preserved nanometer-sized crystalline domains embedded in the amorphous matrix, despite the high degree of structural damage. The results show that hardness and elastic modulus are sensitive indicators for the structural reorganization process.

Keywords

Allanite Radiation damage Mechanical properties Nanoindentation Thermal annealing Oxidation 

Notes

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—BE 5456/2-1 (T.B. and C.E.R.). R.C.E. was supported by the U.S. Department of Energy through the Energy Frontier Research Center “Materials Science of Actinides” under Award Number DE-SC0001089. A.N. was supported by the U.S. Department of Energy Grant DE-FG02-97ER14749. L.A.G. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference 06434. We thank Thomas Malcherek for sample orientation, Gregor Hofer and Warren Oliver for fruitful discussions, the Geological Survey of Norway (NGU) for a quick and helpful response concerning the age database of the NGU, Peter Stutz for sample preparation and Jan Cempírek, the Pacific Museum of Earth (UBC), and the Fersman Mineralogy Museum for samples (LB-1 and R1). The constructive comments and helpful suggestions of two anonymous reviewers are gratefully acknowledged.

Supplementary material

269_2019_1051_MOESM1_ESM.xlsx (25 kb)
Supplementary material 1 (XLSX 24 kb)

References

  1. Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Gieré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Miner 18:551–567.  https://doi.org/10.1127/0935-1221/2006/0018-0551 CrossRefGoogle Scholar
  2. Beirau T, Paulmann C, Bismayer U (2011) Recrystallization of metamict allanite. Miner Mag 75(4):2393–2399.  https://doi.org/10.1180/minmag.2011.075.4.2393 CrossRefGoogle Scholar
  3. Beirau T, Nix WD, Bismayer U, Boatner LA, Isaacson SG, Ewing RC (2016a) Anisotropic properties of zircon and the effect of radiation damage. Phys Chem Miner 43:627–638.  https://doi.org/10.1007/s00269-016-0822-9 CrossRefGoogle Scholar
  4. Beirau T, Nix WD, Ewing RC, Schneider GA, Groat LA, Bismayer U (2016b) Mechanical properties of natural radiation-damaged titanite and temperature-induced structural reorganization: a nanoindentation and Raman spectroscopic study. Am Miner 101:399–406.  https://doi.org/10.2138/am-2016-5433 CrossRefGoogle Scholar
  5. Beirau T, Nix WD, Ewing RC, Pöllmann H, Salje EKH (2018) Radiation-damage-induced transitions in zircon: percolation theory applied to hardness and elastic moduli as a function of density. Appl Phys Let 112:201901.  https://doi.org/10.1063/1.5030626 CrossRefGoogle Scholar
  6. Bonazzi P, Menchetti S (1994) Structural variations induced by heat treatment in allanite and REE-bearing piemontite. Am Miner 79:1176–1184Google Scholar
  7. Bonazzi P, Holtstam D, Bindi L, Nysten P, Capitani GC (2009) Multi-analytical approach to solve the puzzle of an allanite-subgroup mineral from Kesebol, Västra Götaland, Sweden. Am Miner 94:121–134.  https://doi.org/10.2138/am.2009.2998 CrossRefGoogle Scholar
  8. Catlos EJ, Sorensen SS, Harrison TM (2000) Th-Pb ion-microprobe dating of allanite. Am Miner 85:633–648.  https://doi.org/10.2138/am-2000-5-601 CrossRefGoogle Scholar
  9. Chakoumakos BC, Oliver WC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: I. In situ α-decay event damage. Radiat Eff Defect S 118(4):393–403CrossRefGoogle Scholar
  10. Čobić A, Bermanec V, Tomašić N (2010) The hydrothermal recrystallization of metamict allanite-(Ce). Can Miner 48:513–521.  https://doi.org/10.3749/canmin.48.3.513 CrossRefGoogle Scholar
  11. Dollase WA (1971) Refinement of the crystal structure of epidote, allanite and hancockite. Am Miner 56:447–464Google Scholar
  12. Dollase WA (1973) Mössbauer spectra and iron distribution in the epidote-group minerals. Z Kristallogr 138:41–63CrossRefGoogle Scholar
  13. Ehlmann AJ, Walper JL, Williams J (1964) A new, baringer hill-type, rare-earth pegmatite from the central mineral region, Texas. Econ Geol 59:1348–1360.  https://doi.org/10.2113/gsecongeo.59.7.1348 CrossRefGoogle Scholar
  14. Ercit TS (2002) The mess that is “allanite”. Can Miner 40:1411–1419.  https://doi.org/10.2113/gscanmin.40.5.1411 CrossRefGoogle Scholar
  15. Ewing RC (1973) Vickers hardness and reflectance determination for metamict AB2O6-type rare earth Ti-Nb-Ta Oxides. Am Miner 58:942–944Google Scholar
  16. Ewing RC (2011) Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle. Miner Mag 75(4):2359–2377.  https://doi.org/10.1180/minmag.2011.075.4.2359 CrossRefGoogle Scholar
  17. Ewing RC, Meldrum A, Wang LM, Wang SX (2000) Radiation-induced amorphization. Rev Miner Geochem 39:319–361CrossRefGoogle Scholar
  18. Exley RA (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye Granite petrogenesis and REE mobility in hydrothermal systems. Earth Planet Sc Lett 48:97–110CrossRefGoogle Scholar
  19. Firestone RB, Shirley VS (1996) Table of isotopes 2. Wiley, New YorkGoogle Scholar
  20. Földvári M (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary, vol 213. ISBN 978-963-671-288-4Google Scholar
  21. Fu Y, Sun X, Li D, Lin H, Lai C (2017) LA-ICP-MS U-Th-Pb dating and trace element geochemistry of allanite: implications on the different skarn metallogenesis between the Giant Beiya Au and Machangqing Cu-Mo-(Au) deposits in Yunnan, SW China. Minerals 7:251.  https://doi.org/10.3390/min7120251 CrossRefGoogle Scholar
  22. Gavryushkina OA, Travin AV, Kruk NN (2017) Duration of granitoid magmatism in peripheral parts of large igneous provinces (Based on 40Ar/39Ar isotopic studies of Altai Permian-Triassic granitoids. Geodyn Tectonophys 8(4):1035–1047.  https://doi.org/10.5800/GT-2017-8-4-0331 CrossRefGoogle Scholar
  23. Gieré R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. Rev Miner Geochem 56:431–493.  https://doi.org/10.2138/gsrmg.56.1.431 CrossRefGoogle Scholar
  24. Gregory CJ, Rubatto D, Allen CM, Williams IS, Hermann J, Ireland T (2007) Allanite micro-geochronology: a LA-ICP-MS and SHRIMP U-Th-Pb study. Chem Geol 245:162–182.  https://doi.org/10.1016/j.chemgeo.2007.07.029 CrossRefGoogle Scholar
  25. Harlov DE, Andersson UB, Förster H-J, Nyström JO, Dulski P, Broman C (2002) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72.  https://doi.org/10.1016/S0009-2541(02)00148-1 CrossRefGoogle Scholar
  26. Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geological processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147.  https://doi.org/10.1016/j.chemgeo.2008.05.020 CrossRefGoogle Scholar
  27. Hoshino M, Kimata M, Nishida N, Kyono A, Shimizu M, Takizawa S (2005) The chemistry of allanite from the Daibosatsu Pass, Yamanashi, Japan. Miner Mag 69(4):403–423.  https://doi.org/10.1180/0026461056940259 CrossRefGoogle Scholar
  28. Janeczek J, Eby RK (1993) Annealing of radiation damage in allanite and gadolinite. Phys Chem Miner 19:343–356.  https://doi.org/10.1007/BF00202971 CrossRefGoogle Scholar
  29. Joslin DL, Oliver WC (1990) A new method for analyzing data from continuous depth-sensing microindentation tests. J Mater Res 5(1):123–126CrossRefGoogle Scholar
  30. Kartashov PM, Ferraris G, Ivaldi G, Sokolova E, McCammon CA (2002) Ferriallanite-(Ce), CaCeFe3+AlFe2+(SiO4)(Si2O7)O(OH), a new member of the epidote group: description, X-ray and Mössbauer study. Can Miner 40:1641–1648CrossRefGoogle Scholar
  31. Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36.  https://doi.org/10.1016/S1044-5803(02)00192-4 CrossRefGoogle Scholar
  32. Maas R, McCulloch MT, Campbell IH (1987) Sm-Nd isotope systematics in uranium-rare earth element mineralization at the Mary Kathleen Uranium Mine, Queensland. Econ Geol 82:1805–1826.  https://doi.org/10.2113/gsecongeo.82.7.1805 CrossRefGoogle Scholar
  33. Malczewski D, Grabias A (2008) 57Fe Mössbauer Spectroscopy of radiation damaged allanites. Acta Phys Pol, A 114(6):1683–1690.  https://doi.org/10.12693/APhysPolA.114.1683 CrossRefGoogle Scholar
  34. McFarlane CRM (2016) Allanite U—Pb geochronology by 193 nm LA ICP-MS using NIST610 glass for external calinration. Chem Geol 438:91–102.  https://doi.org/10.1016/j.chemgeo.2016.05.026 CrossRefGoogle Scholar
  35. Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchim Acta 114(115):363–376CrossRefGoogle Scholar
  36. Mills SJ, Hatert F, Nickel EH, Ferraris G (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. Eur J Miner 21:1073–1080.  https://doi.org/10.1127/0935-1221/2009/0021-1994 CrossRefGoogle Scholar
  37. Mørup S, Both E (1975) Interpretation of Mössbauer spectra with broadened lines. Nucl Instrum Methods 124(2):445–448.  https://doi.org/10.1016/0029-554X(75)90595-9 CrossRefGoogle Scholar
  38. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Miner Petrol 141:125–144.  https://doi.org/10.1007/s004100000235 CrossRefGoogle Scholar
  39. Ödman OH (1939) The gold-copper-arsenic ore at Holmtjärn, Skellefte District. N Sweden Geol Foren Stock For 61(1):91–111.  https://doi.org/10.1080/11035893909446035 CrossRefGoogle Scholar
  40. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  41. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20.  https://doi.org/10.1557/jmr.2004.19.1.3 CrossRefGoogle Scholar
  42. Papunen H, Lindsjö O (1972) Apatite, monazite and allanite: three rare earth minerals from Korsnäs, Finland. Bul Geol Soc Finl 44:123–129CrossRefGoogle Scholar
  43. Paulmann C, Kurtz R, Bismayer U (2001) Software development for studies of diffuse scattering using CCD-detectors and synchrotron radiation sources. Nucl Instrum Meth A 467–468:1113–1116CrossRefGoogle Scholar
  44. Romer RL, Siegesmund S (2003) Why allanite may swindle about its true age. Contrib Miner Petrol 146:297–307.  https://doi.org/10.1007/s00410-003-0494-6 CrossRefGoogle Scholar
  45. Salje EKH, Safarik DJ, Lahley JC, Groat LA, Bismayer U (2011) Elastic softening of metamict titanite CaTiSiO5: radiation damage and annealing. Am Min 96:1254–1261.  https://doi.org/10.2138/am.2011.3747 CrossRefGoogle Scholar
  46. Škoda R, Plášil J, Jonsson E, Čopjaková R, Langhof J, Galiová MV (2015) Redefinition of thalénite-(Y) and discredition of fluorthelénite-(Y): a reinvestigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities. Miner Mag 79(4):965–983.  https://doi.org/10.1180/minmag.2015.079.4.07 CrossRefGoogle Scholar
  47. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57.  https://doi.org/10.1016/0020-7225(65)90019-4 CrossRefGoogle Scholar
  48. Vance ER, Routcliffe P (1976) Heat treatment of some metamict allanites. Miner Mag 40:521–523CrossRefGoogle Scholar
  49. Vladimirov AG, Ponomareva AP, Shokalskii SP, Khalilov VA, Kostitsyn YA, Ponomarchuk VA, Rudney SN, Vystavnoi SA, Kruk NN, Titov AV (1997) Late paleozoic early mesozoic granitoid magmatism in Altai. Geol Geofiz 38:715–729Google Scholar
  50. Walsh JB (1965) The effect of cracks on the uniaxial elastic compression. J Geophys Res 70(2):399–411CrossRefGoogle Scholar
  51. Welin E, Blomqvist G (1964) Age measurements on radioactive minerals from Sweden. Geol Foren Stock For 86(1):33–50.  https://doi.org/10.1080/11035897.1964.9626366 CrossRefGoogle Scholar
  52. Zhang M, Salje EKH, Malcherek T, Bismayer U, Groat LA (2000) Dehydration of metamict titanite: an infrared spectroscopic study. Can Miner 38:119–130CrossRefGoogle Scholar
  53. Zhang M, Salje EKH, Ewing RC (2010) OH species, U irons, and CO/CO2 in thermally annealed metamict zircon (ZrSiO4). Am Mineral 95:1717–1724.  https://doi.org/10.2138/am.2010.3567 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Claudia E. Reissner
    • 1
    Email author
  • Ulrich Bismayer
    • 2
  • Daniel Kern
    • 3
  • Michael Reissner
    • 3
  • Sulgiye Park
    • 4
  • Jiaming Zhang
    • 4
  • Rodney C. Ewing
    • 4
  • Anna Shelyug
    • 5
  • Alexandra Navrotsky
    • 5
  • Carsten Paulmann
    • 2
    • 6
  • Radek Škoda
    • 7
  • Lee A. Groat
    • 8
  • Herbert Pöllmann
    • 1
  • Tobias Beirau
    • 1
    Email author
  1. 1.Institute of Geosciences and GeographyMartin-Luther-University Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of Earth SciencesUniversity of HamburgHamburgGermany
  3. 3.Institute of Solid State PhysicsTU WienViennaAustria
  4. 4.Department of Geological SciencesStanford UniversityStanfordUSA
  5. 5.Peter A. Rock Thermochemistry Laboratory and NEAT ORUUniversity of California DavisDavisUSA
  6. 6.HASYLABDESYHamburgGermany
  7. 7.Institute of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  8. 8.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations