Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 10, pp 899–908 | Cite as

3T polytype of an iron-rich oxyphlogopite from the Bartoy volcanic field, Transbaikalia: Mössbauer, infrared, Raman spectroscopy, and crystal structure

  • Nikita V. ChukanovEmail author
  • Sergey M. Aksenov
  • Anatoly V. Kasatkin
  • Radek Škoda
  • Fabrizio Nestola
  • Luca Nodari
  • Anastasia D. Ryanskaya
  • Ramiza K. Rastsvetaeva
Original Paper
  • 61 Downloads

Abstract

The Mössbauer, infrared and Raman spectra of iron-rich oxyphlogopite from a new locality, the Bartoy occurrence, Transbaikalia, Russia were obtained and its crystal structure was solved. The mineral is characterized by the absence of OH groups and ordered distribution of Fe2+ and Fe3+ between sites having octahedral coordination. Unlike oxyphlogopite holotype sample which is monoclinic (1M polytype), iron-rich oxyphlogopite belongs to the 3T polytype (space group P3112) with the unit-cell parameters a = 5.3248(2) Å, c = 29.788(3) Å, V = 731.44(8) Å3. Its refined crystal-chemical formula is (Z = 3): A(K0.9Na0.1) [M1(Fe2+0.6Mg0.4) M2(Fe3+0.4Ti0.4Mg0.2) M3(Mg0.4Fe3+0.3Ti0.2Al0.1)] [T1,2(Si0.7Al0.3)2O5]2X(O0.9F0.1)2.

Keywords

Oxyphlogopite 3T polytype Crystal structure IR spectroscopy Raman spectroscopy Mössbauer spectroscopy 

Notes

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS (single crystal X-ray analysis) and Russian Science Foundation, Grant no. 19-17-00050 (investigation of physical properties).

References

  1. Aksenov SM, Chukanov NV (2016) The crystal structure of a fluorine-dominant titanium calcium amphibole from the Eifel paleovolcanic area, Germany. Z Kristallogr 231:385–390Google Scholar
  2. Amisano Canesi A, Chiari G, Ferraris G, Ivaldi G, Soboleva SV (1994) Muscovite- and phengite-3T: crystal structure and conditions of formation. Eur J Mineral 6:489–496Google Scholar
  3. Backhaus K-O, Ďurovič S (1984) Polytypism of micas. I. MDO polytypes and their derivation. Clays Clay Miner 32:453–463Google Scholar
  4. Beran A (2002) Infrared Spectroscopy of Micas. Revs Mineral Geochem 46:351–369Google Scholar
  5. Brandenburg K, Putz H (2005) DIAMOND Version 3. Crystal Impact GbR, BonnGoogle Scholar
  6. Brigatti MF, Kile DE, Poppi L (2003) Crystal structure and chemistry of lithium-bearing trioctahedral micas-3T. Eur J Mineral 15:349–355Google Scholar
  7. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst B 41:244–247Google Scholar
  8. Brown ID, Shannon RD (1973) Empirical bond strength—bond lengths curves for oxides. Acta Cryst A 29:266–271Google Scholar
  9. Cesare B, Cruciani G, Russo U (2003) Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain): crystal-chemical aspects and implications for high-temperature petrogenesis. Am Mineral 88:583–595Google Scholar
  10. Cesare B, Meli S, Nodari L, Russo U (2005) Fe3+ reduction during biotite melting in graphitic metapelites: another origin of CO2 in granulites. Contrib Mineral Petrol 149:129–140Google Scholar
  11. Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer, DordrechtGoogle Scholar
  12. Chukanov NV, Rozenberg KA, Rastsvetaeva RK, Möckel S (2008) New data on titanium-rich biotite: a problem of “wodanite”. New Data Miner 43:72–77Google Scholar
  13. Chukanov NV, Mukhanova AA, Rastsvetaeva RK, Belakovskiy DI, Möckel S, Karimova OV, Britvin SN, Krivovichev SV (2011) Oxyphlogopite K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2: a new mineral species of the mica group. Geol Ore Deposits 53(7):583–590Google Scholar
  14. Diffraction Oxford (2009) CrysAlisPro. Oxford Diffraction Ltd, AbingdonGoogle Scholar
  15. Ďurovič S, Weiss Z, Backhaus K-O (1984) Polytypism of micas. II. Classification and abundance of MDO polytypes. Clays Clay Miner 32:454–474Google Scholar
  16. Dyar MD (1987) A review of Mössbauer data on trioctahedral micas: evidence for tetrahedral Fe3+ and cation ordering. Am Mineral 72:102–112Google Scholar
  17. Dyar MD (2002) Optical and Mössbauer spectroscopy of iron in micas. Rev Miner Geochem 46:313–349Google Scholar
  18. Ericsson T, Wäppling R (1976) Texture effects in 3/2–1/2 Mössbauer spectra. J Physique 37:C6-719–C6-723Google Scholar
  19. Ferraris G, Ivaldi G (2002) Structural features of micas. Rev Mineral Geochem 46:117–153Google Scholar
  20. Freudenberg W (1920) Titanium-biotite (wodanite) from the Katzenbuckel. Mitteilungen der Badischen Geologischen Landesanstalt 8:319–335Google Scholar
  21. Gagné OC, Hawthorne FC (2017) Mean bond-length variations in crystals for ions bonded to oxygen. Acta Cryst B73:1019–1031Google Scholar
  22. Gatta GD, Rotiroti N, Pavese A, Lotti P, Curetti N (2009) Structural evolution of a 3T phengite mica up to 10 GPa; an in situ single-crystal X-ray diffraction study. Z Kristallogr 224:302–310Google Scholar
  23. Greneche JM, Varret F (1982) On the texture problem in Mossbauer spectroscopy. J Phys C Solid State Phys 15:5333–5344Google Scholar
  24. Hallimond AF (1927) On the chemical classification of the mica group. III. The molecular volumes. Mineral Mag 21:195–204Google Scholar
  25. Hawthorne FC (1988) Mössbauer spectroscopy. Rev Mineral 18:255–340Google Scholar
  26. Hendricks SB, Jefferson ME (1939) Polymorphism of the micas with optical measurements. Am Mineral 24:729–771Google Scholar
  27. Ivaldi G, Ferraris G, Curetti N, Compagnoni R (2001) Coexisting 3T and 2M 1 polytypes in a phengite from Cima Pal (Val Savenca, western Alps): chemical and polytypic zoning and structural characterisation. Eur J Mineral 13:1025–1034Google Scholar
  28. Lacalamita M, Schingaro E, Scordari F, Ventruri G, Fabbrizio A, Pedrazzi G (2011) Substitution mechanisms and implication for the estimate of water fugacity for Ti-rich phlogopite from Mt. Vulture, Potenza, Italy. Am Mineral 96:1381–1391Google Scholar
  29. Lagarec K, Rancourt DG (1998) RECOIL, Mössbauer spectral analysis software for windows (version 1.0). Department of Physics, University of Ottawa, CanadaGoogle Scholar
  30. Lalonde AE, Rancourt DG, Ping JY (1998) Accuracy of ferric/ferrous determinations in micas: a comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods. Hyperfine Interact 117:175–204Google Scholar
  31. Loh E (1973) Optical vibrations in sheet silicates. J Phys C Solid State Phys 6:1091–1104Google Scholar
  32. Manuella FC, Carbone S, Ottolini L, Gibilisco S (2012) Micro-Raman spectroscopy and SIMS characterization of oxykinoshitalite in an olivine nephelinite from the Hyblean Plateau (Sicily, Italy). Eur J Mineral 24(3):527–533Google Scholar
  33. Matarrese S, Schingaro E, Scordari F, Stoppa F, Rosatelli G, Pedrazzi G, Ottolini L (2008) Crystal chemistry of phlogopite from Vulture—S. Michele subsynthem volcanics (Mt. Vulture, Italy) and volcanological implications. Am Mineral 93:426–437Google Scholar
  34. McKeown DA, Bell MI, Etz ES (1999) Raman spectra and vibrational analysis of the trioctahedral mica phlogopite. Am Mineral 84(5–6):970–976Google Scholar
  35. Nespolo M (1999) Analysis of family reflections of OD-mica polytypes, and its application to twin identification. Mineral J 21:53–85Google Scholar
  36. Nespolo M, Ďurovič S (2002) Crystallographic basis of polytypism and twinning in micas. Rev Mineral Geochem 46:155–279Google Scholar
  37. Nespolo M, Takeda H, Ferraris G (1997) Crystallography of mica polytypes. In: Merlino S (ed) Modular aspects of minerals/EMU notes in mineralogy, vol 1. Eötvös University Press, Budapest, pp 81–118Google Scholar
  38. Palatinus L, Chapuis G (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790Google Scholar
  39. Pavese A, Ferraris G, Prencipe M, Ibberson R (1997) Cation site ordering in phengite 3T from the Dora-Maira massif (western Alps): a variable-temperature neutron powder diffraction study. Eur J Mineral 9:1183–1190Google Scholar
  40. Pavese A, Curetti N, Ferraris G, Ivaldi G, Russo U, Ibberson R (2003) Deprotonation and order-disorder reactions as a function of temperature in a phengite 3T (Cima Pal, western Alps) by neutron diffraction and Mössbauer spectroscopy. Eur J Mineral 15:357–363Google Scholar
  41. Petřiček V, Dušek M, Palatinus L (2006) Jana2006. Structure determination software programs. Institute of Physics, PrahaGoogle Scholar
  42. Pfannes H-D, Fischer H (1977) The texture problem in Mössbauer spectroscopy. Appl Phys 13:317–325Google Scholar
  43. Prince E (ed) (2004) International tables for crystallography, volume C: mathematical, physical and chemical tables, 3rd ed. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. Rancourt DG (1989) Accurate site populations from Mössbauer spectroscopy. Nucl Instrum Methods Phys Res B 44:199–201Google Scholar
  45. Rancourt DG (1994) Mössbauer spectroscopy of minerals. Phys Chem Minerals 21:244–249Google Scholar
  46. Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary shape static hyperfine parameter distributions in Mtissbauer spectroscopy. Nucl Instrum Methods Phys Res B 58:85–97Google Scholar
  47. Rancourt D, McDonald AM, Lalonde AE, Ping JY (1993) Mössbauer absorber thicknesses for accurate site populations in Fe-bearing minerals. Am Mineral 78:1–7Google Scholar
  48. Rancourt DG, Ping JY, Berman RG (1994) Mössbauer spectroscopy of minerals III. Octahedral-site Fe2+ quadrupole splitting distributions in layer silicates. Phys Chem Miner 21:258–267Google Scholar
  49. Redhammer GJ, Beran A, Schneider J, Amthauer G, Lottermoser W (2000) Spectroscopic and structural properties of synthetic micas on the annite-siderophyllite binary: synthesis, crystal structure refinement, Mössbauer and infrared spectroscopy. Am Mineral 85:449–465Google Scholar
  50. Rinaudo C, Roz M, Boero V, Franchini-Angela M (2004) FT-Raman spectroscopy on several di- and tri-octahedral T-O-T phyllosilicates. N Jb Mineral Monatsh 12:537–554Google Scholar
  51. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. Science 172:567–570Google Scholar
  52. Rosenbusch H (1910) Elemente der Gesteinslehre, 3rd edn. E. Schweizerbart’sche Verlagshandlung, StuttgartGoogle Scholar
  53. Sassi PF, Guidotti C, Rieder M, De Pieri R (1994) On the occurrence of metamorphic 2M 1 phengites: some thoughts on polytypism and crystallization conditions of 3T phengites. Eur J Mineral 6:151–160Google Scholar
  54. Schingaro E, Scordari F, Mesto E, Brigatti MF, Pedrazzi G (2005) Cation-site partitioning in Ti-rich micas from Black Hill (Australia): a multi-technical approach. Clays Clay Miner 53:179–189Google Scholar
  55. Schingaro E, Lacalamita M, Scordari F, Mesto E (2013) 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study. Am Mineral 98:709–717Google Scholar
  56. Scordari F, Ventruti G, Sabato A, Bellatreccia F, Della Ventura G, Pedrazzi G (2006) Ti-rich phlogopite from Mt. Vulture (Potenza, Italy) investigated by a multianalytical approach: substitutional mechanisms and orientation of the OH dipoles. Eur J Mineral 18:379–391Google Scholar
  57. Shabani AAT, Rancourt DG, Lalonde AE (1998) Determination of cis and trans Fe2+ populations in 2M 1 muscovite by Mössbauer spectroscopy. Hyperfine Interact 117:117–129Google Scholar
  58. Tlili A, Smith DC (2007) Raman spectroscopic study of synthetic Na–Mg–Al–Si trioctahedral micas compared with their Ge- and Ga-equivalents. In: Rull-Pérez F, Edwards H, Smith D, Vandenabeele P (eds) Selected topics in Raman spectroscopic applications: geology-bio-materials-art. Universidad Valladolid, Valladolid. ISBN 978-84-690-9239-2Google Scholar
  59. Tlili A, Smith DC, Beny JM, Boyer H (1989) A Raman microprobe study of natural micas. Mineral Mag 53(2):165–179Google Scholar
  60. Weiss Z, Rieder M, Smrčok L, Petřiček V, Bailey SW (1993) Refinement of the crystal structures of two “protolithionites”. Eur J Mineral 5:493–502Google Scholar
  61. Zanazzi PF, Pavese A (2002) Behavior of micas at high-pressure and high-temperature. Rev Mineral Geochem 46:99–116Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
    • 2
    Email author
  • Sergey M. Aksenov
    • 3
  • Anatoly V. Kasatkin
    • 4
  • Radek Škoda
    • 5
  • Fabrizio Nestola
    • 6
  • Luca Nodari
    • 7
  • Anastasia D. Ryanskaya
    • 8
  • Ramiza K. Rastsvetaeva
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of GeologyMoscow State UniversityMoscowRussia
  3. 3.FSRC “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  4. 4.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia
  5. 5.Department of Geological Sciences, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  6. 6.Dipartimento di GeoscienzeUniversità di PadovaPaduaItaly
  7. 7.Institute of Condensed Matter Chemistry and Technology for EnergyCNR-PadovaPaduaItaly
  8. 8.Zavaritsky Institute of Geology and Geochemistry UB RASEkaterinburgRussia

Personalised recommendations