Advertisement

Titanium local coordination environments in Cretaceous–Paleogene and Devonian–Carboniferous boundary sediments as a possible marker for large meteorite impact

  • Tsubasa TobaseEmail author
  • Akira Yoshiasa
  • Toshifumi Komatsu
  • Takumi Maekawa
  • Hidetomo Hongu
  • Maki Okube
  • Hiroshi Arima
  • Kazumasa Sugiyama
Original Paper
  • 31 Downloads

Abstract

The local coordination environments of Ti in Cretaceous–Paleogene (K–Pg) from Stevns Klint and Devonian–Carboniferous (D–C) boundary from western part of Cat Co Beach on Cat Ba Island sediments are studied by K-edge X-ray absorption fine structure (XAFS) in order to provide local atomic information by X-ray absorption near edge structure (XANES) and coordination environments by extended X-ray absorption fine structure (EXAFS). Ti K-edge XAFS spectra in bulk part of K–Pg and D–C boundary sediments are compared with those of reference materials such as TiO2 (rutile, anatase and brookite polymorph), CaTiO3, MgTiO3, SrTiO3, PbTiO3, moldavite-brownish, moldavite-green, suevite from Ries crater, impactite, obsidian and Kilauea volcanic glass. The shapes of XANES and EXAFS spectra in K–Pg sediments are similar to those in suevite. Suevite was formed under meteorite impact and its glass component was formed under high temperature and high pressure. Similarities of XANES and EXAFS between K–Pg sediments and suevite indicate that formation process of K–Pg sediments is related to a meteorite impact event. On the other hand, the shape of XANES spectrum in D–C sediments is similar to those in anatase and obsidian. However, the shape of EXAFS spectra in D–C sediments is similar to those in obsidian, rather than anatase. Coordination environments of Ti in D–C sediments suggest that the original glass-like local environments were changed to anatase-like local environments by devitrification. This leads to the conclusion that the analysis of the atomic coordination environments of Ti in boundary sediments can in principle be used as a marker of large meteorite impact, though this Ti local environmental information is actually lost due to the devitrification phenomenon to anatase by quenching process or long-time diagenesis. This may be compensated by the XAFS analysis of Zr because local coordination environments of Zr in same analytical point of K–Pg sediments were not affected by diagenesis (Tobase et al., J Miner Petrol Sci 110:88–91, 2015a).

Keywords

Ti coordination environments K–Pg boundary sediments D–C boundary sediments EXAFS XANES 

Notes

Acknowledgements

This study was performed within the Photon Factory Project PAC No. 2012G526, and financially supported by the JSPS-VAST Joint Research Program and a Grant-in-Aid from the Japan Society for Promotion of Science (25400500 and 16K05593 to Komatsu) and JSPS Grant-in-Aid for JSPS Research (JP16J10062 to Tobase).

References

  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for Cretaceous-Tertiary extinction. Science 208:1095–1108CrossRefGoogle Scholar
  2. Belza J, Goderis S, Smit J, Vanhaecke F, Baert K, Terryn H, Claeys F (2015) High spatial resolution geochemistry and textural characteristics of ‘microtektite’ glass spherules in proximal Cretaceous–Paleogene sections: Insights into glass alteration patterns and precursor melt lithologies. Geochim Cosmochim Acta 152:1–38CrossRefGoogle Scholar
  3. Belza J, Goderis S, Montanari A, Vanhaecke F, Claeys P (2017) Petrography and geochemistry of distal spherules from the K–Pg boundary in the Umbria-Marche region (Italy) and their origin as fractional condensates and melts in the Chicxulub impact plume. Geochim Cosmochim Acta 202:231–263CrossRefGoogle Scholar
  4. Bohor BF, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogic evidence for an impact event at the cretaceous-tertiary boundary. Science 224:867–869CrossRefGoogle Scholar
  5. Bohor BF, Morreski PJ, Foord EE (1987) Shocked quartz in the Cretaceous-Tertiary boundary clays: evidence for a global distribution. Science 236:705–709CrossRefGoogle Scholar
  6. Bralower TJ, Paull CK, Leckie RM (1998) The Cretaceous-Tertiary boundary cocktail: chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26:331–334CrossRefGoogle Scholar
  7. Claeys P, Casier J, Margolis SV (1992) Mircotektites and mass extinctions: evidence for a late devonian asteroid impact. Science 257:1102–1104CrossRefGoogle Scholar
  8. Claoué-Long JC, Jones PJ, Roberts J (1992) The age of the Devonian-Carboniferous boundary. Annal Soc Géol Belg 115:531–549Google Scholar
  9. Drits VA, Lindgreen H, Sakharov BA, Jakobsen HJ, Zviagina BB (2004) The detailed structure and origin of clay minerals at the Cretaceous/Tertiary boundary, Stevns Klint (Denmark). Clay Miner 39:367–390CrossRefGoogle Scholar
  10. Engelhardt VW (1997) Suevite breccia of the Ries impact crater, Germany: petrography, chemistry and shock metamorphism of crystalline rock clasts. Meteor Planet Sci 32:545–554CrossRefGoogle Scholar
  11. Farges F, Brown GE (1997) Coordination chemistry of titanium (IV) in silicate glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses and tektites at ambient temperature and pressure. Geochim Cosmochim Acta 61:1863–1870CrossRefGoogle Scholar
  12. Farges F, Brown GE, Rehr JJ (1996a) Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim Cosmochim 60:3023–3038CrossRefGoogle Scholar
  13. Farges F, Brown GE, Navrotsky A, Gan H, Rehr JJ (1996b) Coordination chemistry of Ti (IV) in silicate glasses and melts: II, Glasses at ambient temperature and pressure. Geochim Cosmochim Acta 60:3039–3053CrossRefGoogle Scholar
  14. Farges F, Brown GE, Navrotsky A, Gan H, Rehr JR (1996c) Coordination chemistry of Ti (IV) in silicate glasses and melts: III. Glasses and melts from ambient to high temperatures. Geochem Cosmochim Acta 60:3055–3065CrossRefGoogle Scholar
  15. Fortey R (1999) Life: an unauthorized biography: a natural history of the first four thousand million years of life on earth. Flamingo, London, pp 238–260Google Scholar
  16. Galoisy L, Calas G (1993) Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states. Geochem Cosmochim Acta 57:3613–3626CrossRefGoogle Scholar
  17. Gao C, Liu Y, Zong K, Hu Z, Gao S (2010) Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole: implication for the fluid activity and thermo-history of the UHP metamorphism. Lithos 115:51–64CrossRefGoogle Scholar
  18. Gilmour I, Anders BB (1989) Cretaceous–Paleogene boundary event: evidence for a short time scale. Geochim Cosmochim Acta 53:503–511CrossRefGoogle Scholar
  19. Greegor RB, Sandstrom DR, Wong J, Schultz P (1983) Investigation of TiO2–SiO2 glasses by X-ray absorption spectroscopy. J non-cryst solids 55:27–43CrossRefGoogle Scholar
  20. Guenter JR, Jameson GB (1984) Orthorhombic barium orthotitanate, α‘-Ba2TiO4. Acta Crystallogr C40:207–210Google Scholar
  21. Guili G, Eeckhout SG, Paris E, Koeberl C, Pratesi G (2005) Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-resolution XANES spectroscopy. Meteorit Planet Sci 40:1575–1580CrossRefGoogle Scholar
  22. Guili G, Eeckhout SG, Koeberl C, Pratesi G, Paris E (2008) Yellow impact glass from the K/T boundary at Beloc (Haiti): XANES determination of Fe oxidation state and implications for conditions. Meteorit Planet Sci 43:981–986CrossRefGoogle Scholar
  23. Hiratoko T, Yoshiasa A, Nakatani T, Okube M, Nakatsuka A, Sugiyama K (2013) Temperature dependence of pre-edge features in Ti K-edge spectra for ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase. J Synchr Radiat 20:641–643CrossRefGoogle Scholar
  24. Hoppe R (1970) The Coordination Number—an “Inorganic Chameleon”. Angew Chem Int Edit 9:25–34CrossRefGoogle Scholar
  25. Hoppe R (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeit Kristallogr 150:23–52CrossRefGoogle Scholar
  26. Horn M, Schwerdtfeger CF, Meagher EP (1972) Refinement of the structure of anatase at seeral temperatures. Zeit Kristallogr 136:273–281CrossRefGoogle Scholar
  27. International Union of Crystallography Report of the Executive Committee for 1991 (1992) Acta Crystallogr A 48:922–946CrossRefGoogle Scholar
  28. Izett GA (1991) Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alavarez impact extinction hypothesis. J Geophys Res 96:20879–20905CrossRefGoogle Scholar
  29. Koeberl C (1992) Water content of glasses from the K/T boundary, Haiti: indicative of impact origin. Geochim Cosmochim Acta 56:4329–4332CrossRefGoogle Scholar
  30. Koeberl C, Sigurdsson H (1992) Geochemistry of impact glasses from the K/T boundary in Haiti: relation to smectites, and a new type of glass. Geochim Cosmochim Acta 56:2113–2129CrossRefGoogle Scholar
  31. Komatsu T, Takashima R, Naruse H, Phuong TH, Dang TH, Nguyen DP, Dinh CT, Ho TC, Tran TV, Kato S, Maekawa T (2012a) Devonian-Carboniferous transition in the Pho Han Formation on Cat Ba Island, northeastern Vietnam. J Geol Soc Jpn 118:V–VICrossRefGoogle Scholar
  32. Komatsu T, Takashima R, Phuong TH, Dang TH, Nguyen DP, Nguyen HH, Kato S, Hirata K, Maekawa T (2012b) Devonian to Carboniferous transitional beds on Cat Ba Island, northeastern Vietnam—a preliminary assessment. Acta Geosci Sinica suppl 33:38Google Scholar
  33. Komatsu T, Kato S, Hirata K, Takashima R, Ogata Y, Oba M, Naruse H, Ta HP, Nguyen DP, Dang TH, Doan NT, Nguyen HH, Sakata S, Kaiho K, Konigshof P (2014) Devonian-Carboniferous transition a Hangenberg Black Shale equivalent in the Pho Han Formation on Cat Ba Island, Northeastern Vietnam. Palaeogeogr Palaeoclimatol Palaeoecol 404:30–43CrossRefGoogle Scholar
  34. Kring DA, Boynton WV (1991) Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochim Cosmochim Acta 55:1737–1742CrossRefGoogle Scholar
  35. Li Y, Ishigaki T (2002) Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. J Cryst Growth 242:511–516CrossRefGoogle Scholar
  36. Lytle FW, Greegor RB (1988) Discussion of X-ray-absorption near-edge structure: application to Cu in the high-Tc superconductors La1.8Sr0.2CuO4 and YBa2CuO7. Phys Rev B 37:1550–1562CrossRefGoogle Scholar
  37. Maeda H (1987) Accurate bond length determination by EXAFS method. J Phys Soc Jpn 56:2777–2787CrossRefGoogle Scholar
  38. Martínez-Ruiz F, Ortega-Huertas M, Palomo-Delgado I, Smit J (2001) K-T boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits. Geol Soc Lond 183:149–161CrossRefGoogle Scholar
  39. Miyano Y, Yoshiasa A, Tobase T, Isobe H, Hongu H, Okube M, Nakatsuka A, Sugiyama K (2016) Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K–Pg boundary clays from Stevns Klint. J Phys Confer Ser 712:012097CrossRefGoogle Scholar
  40. Mysen B, Neuville D (1995) Effect of temperature and TiO2 content on the structure of Na2Si2O5-Na2Ti2O5 melts and glass. Geochim Cosmochim Acta 59:325–342CrossRefGoogle Scholar
  41. Nespolo M, Guillot B (2016) CHARDI2015: charge Distribution analysis of non-molecular structures. J Appl Crystallogr 49:317–321CrossRefGoogle Scholar
  42. Nickel EH, Grice JD (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature. Can Mineral 36:14Google Scholar
  43. Officer CB, Drake CL (1985) Terminal Cretaceous environmental events. Science 227:1161–1167CrossRefGoogle Scholar
  44. Okube M, Sasaki S, Yoshiasa A, Wang L, Nakatani T, Hongu H, Murai K, Nakatsuka A, Miyawaki R (2012) Local structure of Zn in Cretaceous–Paleogene boundary clay from Stevns Klint. J Miner Petrol Sci 107:192–196CrossRefGoogle Scholar
  45. Paris E, Dingwell DB, Seifert FA, Mottana A, Romano C (1994) Pressure-induced coordination change of Ti in silicate glass: a XANES study. Phys Chem Miner 21:520–525Google Scholar
  46. Penn RL, Banfield JF (1999) Formation of rutile nuclei at anatase (112) twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am Miner 84:871–876CrossRefGoogle Scholar
  47. Rampino MR, Reynolds RC (1983) Clay mineralogy of the Cretaceous-Tertiary boundary clay. Science 219(4584):495–498CrossRefGoogle Scholar
  48. Raup D, Sepkoski J Jr (1982) Mass extinctions in the marine fossil record. Science 215(4539):1501–1503CrossRefGoogle Scholar
  49. Rehr JJ, Mustre de Leon J, Zabinsky SI, Albers RC (1991) Theoretical X-ray absorption fine structure standards. J Am Chem Soc B 113:5135–5140CrossRefGoogle Scholar
  50. Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell DS III, Morgan LE, Mundil R, Smit J (2013) Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science 339:684–687CrossRefGoogle Scholar
  51. Sakai S, Yoshiasa A, Arima H, Okube M, Numako C, Sato T (2007) XAFS study of as in KT boundary clays. AIP Conf Proc 882:274CrossRefGoogle Scholar
  52. Schmitz B (1992) Chalcophile elements and Ir in continental Cretaceous–Paleogene boundary clays from the western interior of the USA. Geochim Cosmochim Acta 56:1695–1703CrossRefGoogle Scholar
  53. Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy in the phanerozoic. Springer, Berlin, pp 35–51CrossRefGoogle Scholar
  54. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  55. Sigurdsson H, D’Hondt S, Arthur MA, Bralower TJ, Zachos JC, van Fossen M, Channell ET (1991a) Glass from the Cretaceous/Tertiary boundary in Haiti. Nature 349:482–487CrossRefGoogle Scholar
  56. Sigurdsson H, Bonte P, Turpin L, Chaussidon M, Metrich N, Steinberg M, Pradel P, D’Hondt S (1991b) Geochemical constraints on source regions of Cretaceous/Tertiary impact glasses. Nature 353:839–842CrossRefGoogle Scholar
  57. Smit J, Montanari A, Swinburne NHM, Alvarez W, Hildebrand AR, Margolis AR, Claeys P, Lowrie W, Asaro F (1992) Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology 20:99–103CrossRefGoogle Scholar
  58. Stebbins JF, McMillan P (1989) Five- and six- coordinated Si in K2Si4O9 glass quenched from 1.9 GPa and 1200 °C. Am Mineral 74:965–968Google Scholar
  59. Stöffler D, Grieve RAF (1994) Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS subcommision on the systematics of metamorphic rocks. Abstr 25th Lunar Planet Sci Confer  1347Google Scholar
  60. Strong CP, Brooks RR, Wilson SM, Reeves RD, Orth CJ, Mao XY, Quintana LR, Anders E (1987) A new Cretaceous–Paleogene boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry. Geochim Cosmochim Acta 51:2769–2777CrossRefGoogle Scholar
  61. Tobase T, Yoshiasa A, Wang L, Hiratoko T, Hongu H, Okube M, Sugiyama K (2015a) XAFS study of Zr in Cretaceous-Tertiary boundary clays from Stevns Klint. J Miner Petrol Sci 110:88–91CrossRefGoogle Scholar
  62. Tobase T, Yoshiasa A, Wang L, Hiratoko T, Hongu H, Isobe H, Miyawaki R (2015b) XAFS study on the Zr local structure in tektites and natural glasses. J Miner Petrol Sci 110:1–7CrossRefGoogle Scholar
  63. Tsukimura K, Nakazawa H (1994) Research proposal of the materials formed on the earth’s surface. J Miner Soc Jpn 23:77–81 (in Japanese) Google Scholar
  64. Wang L, Yoshiasa A, Okube M, Takeda T (2011) Titanium local structure in tektite probed by X-ray absorption fine spectroscopy. J Synchrotron Radiat 18:885–890CrossRefGoogle Scholar
  65. Wang L, Yoshiasa A, Okube M, Nakatani T, Hayasaka Y, Isobe H (2013) Local structure of Titanium in natural glasses probed by X-ray absorption fine structure. J Phys Confer Ser 430:012121CrossRefGoogle Scholar
  66. Werthmann R, Hoppe R (1985) Ein neues einfaches Ttitanat: KNaTiO3. Z anorg allg Chem 523:54–62CrossRefGoogle Scholar
  67. White RV, Saunders AD (2005) Volcanism, impact and mass extinction: incredible or credible coincidences? Lithos 79:299–316CrossRefGoogle Scholar
  68. Wu KK, Brown ID (1973) The crystal structure of α-barium orthotitanate, α-Ba2TiO4, and the bond strength-bond length curve of Ti–O. Acta Crystallogr B29:2009–2012CrossRefGoogle Scholar
  69. Yarger JL, Diefenbacher J, Smith KH, Wolf GH, Poe B, McMillan PF (1995) Al3+ coordination changes in high pressure aluminosilicate liquids. Science 270:1964–1967CrossRefGoogle Scholar
  70. Yarker CA, Johnson PAV, Wright AC, Wong JB, Greegor RB, Lytle FW, Siclair RN (1986) Neutron diffraction and exafs evidence for TiO2 units in vitreous. J Non-Cryst Solids 79:117–136CrossRefGoogle Scholar
  71. Yau YC, Peacor DR, Essene EJ (1987) Authigenic anatase and titanite in shales from the Salton Sea geo thermal field. Neues Jb Miner Monat 10:441–452Google Scholar
  72. Yoshiasa A, Koto K, Maeda H, Ishii T (1997) The mean-square relative displacement and displacement correlation functions in tetrahedrally and octahedrally coordinated ANB8–N crystals. Jpn J Appl Phys 36:781–784CrossRefGoogle Scholar
  73. Yoshiasa A, Nagai T, Ohtaka O, Kamishima O, Shimomura O (1999) Pressure and temperature dependence of EXAFS Debye-Waller factors in diamond-type and white-tin-type germanium. J Synchrotron Radiat 6:43–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  2. 2.Université de Lorraine, CRM2, UMR 7036Vandoeuvre-les-NancyFrance
  3. 3.CNRS, CRM2, UMR 7036Vandoeuvre-les-NancyFrance
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations