Advertisement

Natural bentorite—Cr3+ derivate of ettringite: determination of crystal structure

  • Yurii V. Seryotkin
  • Ella V. Sokol
  • Svetlana N. KokhEmail author
  • Victor V. Sharygin
Original Paper
  • 24 Downloads

Abstract

Bentorite, a Cr3+-substituted analogue of ettringite (Ca6Cr2(SO4)3(OH)12·26H2O), has been found as veinlet filling at its holotype locality in the Hatrurim Basin (Negev Desert). Quite abundant massive bentorite with Cr/(Cr + Al) ratios up to 0.95–0.99 coexists with sporadic portlandite, gypsum, afwillite, truscottite, fluorapatite, tobermorite, calcite, and vaterite. It occurs as almost monomineralic clots composed of fibrous grains. The crystal structure of bentorite has been determined and refined for the first time by XRD powder diffraction coupled with high-accuracy synchrotron low-temperature measurements at 100, 250 K and 295 K. Bentorite is isostructural with ettringite, space group P31c. The analysed bentorite sample has a trigonal unit cell with the parameters a = 11.16150(5), c = 21.63017(19) Å, V = 2333.650(19) Å3 at 100 K; a = 11.17790(5), c = 21.7375(2) Å, and V = 2352.12(2) Å3 at 250 K, and a = 11.2110(2), c = 21.7654(7) Å, and V = 2369.10(7) Å3 at 295 K. The bentorite structure includes only (SO4)2−-groups, three anions per formula unit, as in ettringite. Unlike ettringite, bentorite has Cr3+ instead of Al3+ cations, this being the only difference in chemistry. The obtained structure confirms the existence of a continuous series of ettringite \(\normalsize {\text{C}}{{\text{a}}_6}{\text{Al}}_{2}^{{\text{M}}}\left[ {{\text{S}}{{\text{O}}_4}} \right]_{3}^{\text{R}}{({\text{OH}})_{12}} \cdot 26{{\text{H}}_{\text{2}}}{\text{O}}\)–bentorite \({\text{C}}{{\text{a}}_6}{\text{Cr}}_{2}^{{\text{M}}}\left[ {{\text{S}}{{\text{O}}_4}} \right]_{3}^{{\text{R}}}{({\text{OH}})_{12}} \cdot 26{{\text{H}}_{\text{2}}}{\text{O}}\) solid solutions over the whole range 0 ≤ Cr3+/(Al + Cr3+) ≤ 1.

Keywords

Bentorite Crystal structure Bentorite–ettringite solid solutions Chromium 

Notes

Acknowledgements

The study was supported by the Russian Science Foundation, Grant 17-17-01056. The European Synchrotron Radiation Facility is acknowledged for the allocation of experimental beam time. The authors are indebted to Boris Zakharov and to Wilson Mogodi for technical support during the LT experiments.

Supplementary material

269_2019_1022_MOESM1_ESM.doc (67 kb)
Supplementary material 1 (DOC 67 KB)
269_2019_1022_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 44 KB)

References

  1. Bannister FA, Hey MH, Bernal JD (1936) Ettringite from Scawt Hill Co. Antrim. Mineral Mag 24:324–329.  https://doi.org/10.1180/minmag.1936.024.153.05 Google Scholar
  2. Beattie JK, Best SP (1997) Structures and spectroscopy of hexaaquametal(III) ions. Coord Chem Rev 166:391–415.  https://doi.org/10.1016/S0010-8545(97)00049-0 Google Scholar
  3. Bentor YK, Gross S, Heller L (1963) High-temperature minerals in non-metamorphosed sediments in Israel. Nature 199:478–479.  https://doi.org/10.1038/199478a0 Google Scholar
  4. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B 47:192–197.  https://doi.org/10.1107/S0108768190011041 Google Scholar
  5. Brough AR, Atkinson A (2001) Micro-Raman spectroscopy of thaumasite. Cem Concr Res 31:421–424.  https://doi.org/10.1016/S0008-8846(00)00459-2 Google Scholar
  6. Burg A, Starinsky A, Bartov Y, Kolodny Y (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Isr J Earth Sci 40:107–124Google Scholar
  7. Burg A, Kolodny Y, Lyakhovsky V (1999) Hatrurim-2000: the “Mottled Zone” revisited, forty years later. Isr J Earth Sci 48:209–223Google Scholar
  8. Chukanov NV (2014) Infrared spectra of mineral species. Springer, Dordrecht Heidelberg New York London.  https://doi.org/10.1007/978-94-007-7128-4 Google Scholar
  9. Chukanov NV, Britvin SN, Van KV, Möckel S, Zadov AE (2012) Kottenheimite, Ca3Si(OH)6(SO4)2·12H2O, a new member of the ettringite group from the Eifel area, Germany. Can Mineral 50:55–63.  https://doi.org/10.3749/canmin.50.1.55 Google Scholar
  10. Chukanov NV, Zubkova NV, Pautov LA, Göttlicher J, Kasatkin AV, Van KV, Ksenofontov DA, Pekov IV, Vozchikova SA, Pushcharovsky DYu (2018) Jouravskite: refined data on the crystal structure, chemical composition and spectroscopic properties. Phys Chem Minerals.  https://doi.org/10.1007/s00269-018-1012-8 (in press) Google Scholar
  11. Cody AM, Lee H, Cody RD, Spry PG (2004) The effect of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3‧26H2O. Cem Concr Res 34:869–881.  https://doi.org/10.1016/j.cemconres.2003.10.023 Google Scholar
  12. Deb S, Manghnani M, Ross K, Livingston R, Monteiro P (2003) Raman scattering and X-ray diffraction study of the thermal decomposition of an ettringite-group crystal. Phys Chem Minerals 30:31–38.  https://doi.org/10.1007/s00269-002-0279-x Google Scholar
  13. Deer WA, Howie RA, Zussman J (1986) Rock-forming minerals, V. 1B: disilicates and ring silicates. Geological Society, LondonGoogle Scholar
  14. Drebushchak VA, Seryotkin YuV, Kokh SN, Sokol EV (2013) Natural specimen of triple solid state solution ettringite–thaumasite–chromate–ettringite. J Therm Anal Calorim 114:777–783.  https://doi.org/10.1007/s10973-013-2989-3 Google Scholar
  15. Elie M, Techer I, Trotignon L, Khoury H, Salameh E, Vandamme D, Boulvais P, Fourcade S (2007) Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: Organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruck natural analogue (central Jordan). Appl Geochem 22:1311–1328.  https://doi.org/10.1016/j.apgeochem.2007.02.013 Google Scholar
  16. Fleurance S, Cuney M, Malartre M, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219.  https://doi.org/10.1016/j.palaeo.2012.10.020 Google Scholar
  17. Frost RL (2004) Raman microscopy of selected chromate minerals. J Raman Spectr 35:153–158.  https://doi.org/10.1002/jrs.1121 Google Scholar
  18. Frost R, Lopez A, Xi Y, Scholz R, Magela da Costa G, Lima RMF, Granja A (2013) The spectroscopic characterization of the sulphate mineral ettringite from Kuruman manganese deposits, South Africa. Vib Spectrosc 68:266–271.  https://doi.org/10.1016/j.vibspec.2013.08.011 Google Scholar
  19. Gatta GD, McIntyre GJ, Swanson JG, Jacobsen SD (2012) Minerals in cement chemistry: a single-crystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. Am Mineral 97:1060–1069.  https://doi.org/10.2138/am.2012.4058 Google Scholar
  20. Gilat A (1998) Hydrothermal activity and hydro-explosions as a cause of natural combustion and pyrolysis of bituminous rocks: the case of Pliocene metamorphism in Israel (Hatrurim Formation), Geol. Surv. Isr. Curr Res 11:96–102Google Scholar
  21. Goetz-Neunhoeffer F, Neubauer J, Schwesig P (2006) Mineralogical characteristics of Ettringites synthesized from solutions and suspensions. Cem Concr Res 36:65–70.  https://doi.org/10.1016/j.cemconres.2004.04.037 Google Scholar
  22. Granger MM, Protas J (1969) Détermination et étude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)6·12H2O. Acta Crystallogr B25:1943–1951Google Scholar
  23. Gross S (1977) The mineralogy of the Hatrurim formation, Israel. Geol Surv Isr Bull 70:80Google Scholar
  24. Gross S (1980) Bentorite. A new mineral from the Hatrurim area, west of the Dead Sea, Israel. Isr J Earth Sci 29:81–84Google Scholar
  25. Hartman MR, Berliner R (2006) Investigation of the structure of ettringite by time-of-flight neutron powder diffraction techniques. Cem Concr Res 36:364–370.  https://doi.org/10.1016/j.cemconres.2005.08.004 Google Scholar
  26. Hauff PL, Foord EE, Rosenblum S, Hakki W (1983) Hashemite, Ba(Cr,S)O4, a new mineral from Jordan. Am Mineral 68:1223–1225Google Scholar
  27. Khoury HN, Al-Zoubi AS (2014) Origin and characteristics of Cr-smectite from Suweileh area. Jordan Appl Clay Sci 90:43–52.  https://doi.org/10.1016/j.clay.2014.01.00 Google Scholar
  28. Khoury H, Nassir S (1982) High temperature mineralization in Maqarin area, North Jordan, Neues Jahrb. Mineralogie Abh 144:197–213Google Scholar
  29. Khoury HN, Sokol EV, Kokh SN, Seryotkin YV, Nigmatulina EN, Goryainov SV, Belogub EV, Clark ID (2016) Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineral Petrol 110:125–140.  https://doi.org/10.1007/s00710-015-0413-3 Google Scholar
  30. Kolodny Y, Gross S (1974) Thermal metamorphism by combustion of organic matter: isotopic and petrological evidence. J Geol 82:489–506Google Scholar
  31. Larson A, Von Dreele R (2004) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748Google Scholar
  32. Liu C, Hystad G, Golden JJ, Hummer DR, Downs RT, Morrison ShM, Ralph JP, Hazen RM (2017) Chromium mineral ecology. Am Mineral 102:612–619.  https://doi.org/10.2138/am-2017-5900 Google Scholar
  33. Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301.  https://doi.org/10.2138/am-2001-1017 Google Scholar
  34. Model S506 Interactive Peak Fit (2002) User’s manual. Canberra Industries Inc, CanberraGoogle Scholar
  35. Moore A, Taylor HFW (1970) Crystal structure of ettringite. Acta Crystallogr B 26:386–393.  https://doi.org/10.1107/S0567740870002443 Google Scholar
  36. Möschner G, Lothenbach B, Winnefeld F, Ulrich A, Figi R, Kretzschmar R (2009) Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1 − xFex(OH)6]2(SO4)3·26H2O). Cem Concr Res 39:482–489.  https://doi.org/10.1016/j.cemconres.2009.03.001 Google Scholar
  37. Myneni S, Traina S, Waychunas G, Logan T (1998) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim Cosmochim Acta 62(21/22):3499–3514.  https://doi.org/10.1016/S0016-7037(98)00221-X Google Scholar
  38. Nishio-Hamane D, Ohnishi M, Momma K, Shimobayashi N, Miyawaki R, Minakawa T, Inabaet S (2015) Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan. Mineral Mag 79:413–423.  https://doi.org/10.1180/minmag.2015.079.2.18 Google Scholar
  39. Novikov I, Vapnik Y, Safonova I (2013) Mud volcano origin of the Mottled Zone, South Levant. Geosci Front 4:597–619.  https://doi.org/10.1016/j.gsf.2013.02.005 Google Scholar
  40. Ogawa K, Roy DM (1982) C4A3S̄ hydration, ettringite formation, and its expansion mechanism: III. Effect of CaO, NaOH and NaCl; conclusions. Cem Concr Res 12:247–256.  https://doi.org/10.1016/0008-8846(82)90011-4 Google Scholar
  41. Pekov IV, Chukanov NV, Britvin SN, Kabalov YK, Göttlicher J, Yapaskurt VO, Zadov AE, Krivovichev SV, Shüller W, Ternes B (2012) The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite–hielscherite solid-solution series. Mineral Mag 76:1133–1152.  https://doi.org/10.1180/minmag.2012.076.5.06 Google Scholar
  42. Perkins RB, Palmer CD (1999) Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5–75 °C. Geochim Cosmochim Acta 63:1969–1980.  https://doi.org/10.1016/S0016-7037(99)00078-2 Google Scholar
  43. Phedorin MA, Bobrov VA, Chebykin EP, Goldberg EL, Melgunov MS, Filippova SV, Zolotarev KV (2000) Comparison of synchrotron radiation Xray fluorescence with conventional techniques for the analysis of sedimentary samples. J GeostandGeolanal 24:205–216.  https://doi.org/10.1111/j.1751-908X.2000.tb00772.x Google Scholar
  44. Pöllmann H, Kuzel H-J (1990) Solid solution of ettringites: Part I: Incorporation of OH and CO3 2– in 3CaO.A12O3.32H2O. Cem Concr Res 20:941–947Google Scholar
  45. Pöllmann H, Kuzel H-J, Wenda R (1989) Compounds with ettringite structure. N Jb Mineral Abh 160:133–158Google Scholar
  46. Pöllmann H, Auer S, Kuzel H-J (1993) Solid solution of ettringites: part II: incorporation of B(OH)4 and CrO4 2– in 3CaO·Al2O3·3CaSO4·32H2O. Cem Concr Res 23:422–430Google Scholar
  47. Renaudin G, Segni R, Mentel D, Nedelec J-M, Leroux F, Taviot-Gueho C (2007) A Raman study of the sulfated cement hydrates: ettringite and monosulfoaluminate. J Adv Concr Technol 5(3):299–312.  https://doi.org/10.3151/jact.5.299 Google Scholar
  48. Seryotkin YuV, Sokol EV, Kokh SN, Murashko MN (2018) Natural Cr3+-rich ettringite: occurrence, properties, and crystal structure. Phys Chem Minerals 45:279–292.  https://doi.org/10.1007/s00269-017-0917-y Google Scholar
  49. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767Google Scholar
  50. Sharygin VV (2019) A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: mineral chemistry, genesis and formation temperatures. Mineral Mag 83(1):1–26.  https://doi.org/10.1180/mgm.2018.138 Google Scholar
  51. Sokol E, Novikov I, Zateeva S, Vapnik Y, Shagam R, Kozmenko O (2010) Combustion metamorphic rocks as indicators of fossil mud volcanism: new implications for the origin of the Mottled Zone, Dead Sea rift area. Basin Res 22:414–438.  https://doi.org/10.1111/j.1365-2117.2010.00462.x Google Scholar
  52. Sokol EV, Gaskova OL, Kokh SN, Kozmenko OA, Seryotkin YuV, Ye V, Murashko MN (2011) Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. Am Mineral 96:659–674.  https://doi.org/10.2138/am.2011.3487 Google Scholar
  53. Sokol EV, Kokh SN, Vapnik Y, Thiéry V, Korzhova SA (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. Am Mineral 99:1471–1487.  https://doi.org/10.2138/am.2014.4704 Google Scholar
  54. Terai T, Mikuni A, Komatsu R, Ikeda K (2006) Synthesis of Cr(VI)-ettringite in portlandite suspensions as a function of pH. J Ceram Soc Jpn 114:299–302.  https://doi.org/10.2109/jcersj.114.299 Google Scholar
  55. The Powder Diffraction File PDF-4+ (2009) International Centre for Diffraction Data, ReleaseGoogle Scholar
  56. Thiéry V, Trincal V, Davy CA (2017) The elusive ettringite under the high-vacuum SEM—a reflection based on natural samples, the use of Monte Carlo modelling of EDS analyses and an extension to the ettringite group minerals. J Microsc 268(1):84–93.  https://doi.org/10.1111/jmi.12589 Google Scholar
  57. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213.  https://doi.org/10.1107/S0021889801002242 Google Scholar
  58. Tregenna-Piggott PLW, Best SP (1996) Single-crystal Raman spectroscopy of the rubidium alums RbMIII(SO4)2·12H2O (MIII = Al, Ga, In, Ti, V, Cr, Fe) between 275 and 1200 cm– 1: correlation between the electronic structure of the tervalent cation and structural abnormalities. Inorg Chem 35:5730–5736.  https://doi.org/10.1021/ic9602759 Google Scholar
  59. Wieczorek-Ciurowa K, Fela K, Kozak AJ (2001) Chromium(III)-ettringite formation and its thermal stability. J Therm Anal Calorim 65:655–660.  https://doi.org/10.1023/A:1017978414203 Google Scholar
  60. You K-S, Ahn J-W, Han D-Y, Cho K-H, Kim H (2007) Changing morphology and crystal structure in ettringite by trivalent chromium. Mater Sci Forum 544–545:529–532.  https://doi.org/10.4028/www.scientific.net/MSF.544-545.529 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and MineralogySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations