Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 4, pp 417–425 | Cite as

Jouravskite: refined data on the crystal structure, chemical composition and spectroscopic properties

  • Nikita V. ChukanovEmail author
  • Natalia V. Zubkova
  • Leonid A. Pautov
  • Jörg Göttlicher
  • Anatoly V. Kasatkin
  • Konstantin V. Van
  • Dmitriy A. Ksenofontov
  • Igor V. Pekov
  • Svetlana A. Vozchikova
  • Dmitry Yu. Pushcharovsky
Original Paper

Abstract

Refined data on the crystal structure, chemical composition and properties of jouravskite, ideally Ca3Mn4+(SO4)(CO3)(OH)6·12H2O, have been obtained on a sample from N’Chwaning 3 Mine, Kuruman, Kalahari manganese field, Northern Cape Province, South Africa. The chemical composition determined using a combination of different methods (including ICP-OES, gas chromatography of products of ignition and electron microprobe) is (wt%): CaO 25.88, SrO 0.19, BaO 0.23, B2O3 0.39, Fe2O3 1.01, MnO2 12.00, SiO2 0.06, CO2 6.8, SO3 12.44, H2O 41.8, total 100.80, which corresponds to the empirical formula (Z = 2): (Са2.98Sr0.01Ba0.01)Σ3.00(Mn4+0.89Fe3+0.08Si0.01)Σ0.98{(SO4)1.00(CO3)1.00[B(OH)4]0.07}Σ2.07(OH)5.78·11.94H2O. Tetravalent state of Mn was confirmed by Mn K-edge XANES spectroscopy. The IR spectrum of jouravskite contains characteristic bands of Mn4+(OH)6 octahedra, CO32− and SO42− anions, and H2O molecules. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.0332. Jouravskite is isostructural with thaumasite. The parameters of the hexagonal (space group P63) unit cell are: a = 11.07129(14) Å, c = 10.62650(14) Å, V = 1128.02(3) Å3 and Z = 3. Investigation of other samples of ettringite-group minerals from N’Chwaning 3 Mine demonstrates wide variations of the contents of manganese, iron and boron, and possible existence of a Mn4+-dominant analogue of sturmanite with the presumed idealized formula Са6Mn4+2(SO4)2[B(OH)4](OH)10O2·nH2O.

Keywords

Jouravskite Ettringite group Crystal structure Chemical composition IR spectroscopy XANES spectroscopy N’Chwaning 3 Mine 

Notes

Acknowledgements

This work was financially supported by the Russian Foundation for Basic Research, Grant no. 18-29-12007_mk.

Supplementary material

269_2018_1012_MOESM1_ESM.pdf (139 kb)
Supplementary material 1 (PDF 139 KB)
269_2018_1012_MOESM2_ESM.cif (17 kb)
Supplementary material 2 (CIF 16 KB)

References

  1. Batic OR, Milanesi CA, Maiza PJ, Marfil SA (2000) Secondary ettringite formation in concrete subjected to different curing conditions. Cement Concr Res 30:1407–1412CrossRefGoogle Scholar
  2. Brown PW, Hooton RD (2002) Ettringite and thaumasite formation in laboratory concretes prepared using sulfate-resisting cements. Cement Concr Compos 24:361–370CrossRefGoogle Scholar
  3. Brown PW, Hooton RD, Clark BA (2003) The co-existence of thaumasite and ettringite in concrete exposed to magnesium sulfate at room temperature and the influence of blast-furnace slag substitution on sulfate resistance. Cement Concr Compos 25:939–945CrossRefGoogle Scholar
  4. Chalmin E, Farges F, Brown GE Jr (2009) A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contrib Mineral Petrol 157:111–126CrossRefGoogle Scholar
  5. Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer, DordrechtCrossRefGoogle Scholar
  6. Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, ChamCrossRefGoogle Scholar
  7. Chukanov NV, Britvin SN, Van KV, Möckel S, Zadov AE (2012) Kottenheimite, Ca3Si(SO4)2(OH)6·12H2O, a new ettringite-group mineral from the Eifel area, Germany. Can Mineral 50:55–63CrossRefGoogle Scholar
  8. Chukanov NV, Kasatkin AV, Zubkova NV, Britvin SN, Pautov LA, Pekov IV, Varlamov DA, Bychkova YaV, Loskutov AB, Novgorodova EA (2016) Tatarinovite Са3Al(SO4)[В(ОH)4](ОH)6·12H2O, a new ettringite-group mineral from Bazhenovskoe deposit, central Urals, Russia, and its crystal structure. Geol Ore Depos 58(8):653–665CrossRefGoogle Scholar
  9. Crammond NJ (1985) Thaumasite in failed cement mortars and renders from exposed brickwork. Cement Concr Res 15:1039–1050CrossRefGoogle Scholar
  10. Day RL (1992) The effect of secondary ettringite formation on the durability of concrete: a literature analysis. Portland Cement Association, SkokieGoogle Scholar
  11. Dunn PJ, Peacor DR, Leavens PB, Baum JL (1983) Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey. Am Mineral 68:1033–1037Google Scholar
  12. Effenberger H, Kirfel A, Will G, Zobetz E (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6(SO4)(CO3)⋅12H2O. N Jb Miner Mh 60–68Google Scholar
  13. Farges F (2005) Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials. Phys Rev B 71(155109):1–14Google Scholar
  14. Ferraris G, Ivaldi G (1988) Bond valence vs bond length in O···O hydrogen bonds. Acta Cryst B 44:341–344CrossRefGoogle Scholar
  15. Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Cryst B71:562–578Google Scholar
  16. Gaudefroy C, Permingeat F (1965) La jouravskite, une nouvelle espèce minérale. Bull Soc fr Minéral 88:254–262 (French) Google Scholar
  17. Granger MM, Protas J (1969) Détermination et étude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)6·12H2O. Acta Cryst 25:1943–1951CrossRefGoogle Scholar
  18. Gross S (1977) The mineralogy of the Hatrurim Formation, Israel. Geol Sur Israel Bull 70:25–26Google Scholar
  19. Gross S (1980) Bentorite. A new mineral from the Hatrurim Area, west of the Dead Sea, Israel. Israel J Earth Sci 29:81–84Google Scholar
  20. Grubessi O, Mottana A, Paris E (1986) Thaumasite from the Tschwinning [N’Chwaning] mine, South Africa. Tschermaks Mineral Petrog Mitt 35:149–156CrossRefGoogle Scholar
  21. Hentschel G (1993) Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel. Lapis 18(9):11–23Google Scholar
  22. Knill DC, Young BR (1960) Thaumasite from Co. Down, Northern Ireland. Mineral Mag 32:416–418Google Scholar
  23. Kusachi I, Shiraishi N, Shimada K, Ohnishi M, Kobayashi S (2008) CO3-rich charlesite from the Fuka mine, Okayama Prefecture, Japan. J Mineral Petrol Sci 103:47–51CrossRefGoogle Scholar
  24. Malinko SV, Chukanov NV, Dubinchuk VT, Zadov AE, Koporulina EV (2001) Buryatite, Ca3(Si,Fe3+,Al)[SO4](OH)5O·12H2O, a new mineral. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proc Rus Mineral Soc) 130(2):72–78 (Russian)Google Scholar
  25. Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am Mineral 97:816–827CrossRefGoogle Scholar
  26. Martucci A, Cruciani G (2006) In situ time resolved synchrotron powder diffraction study of thaumasite. Phys Chem Miner 33:723–731CrossRefGoogle Scholar
  27. McDonald AM, Petersen OV, Gault RA, Johnsen O, Niedermayr G, Brandstätter F, Giester G (2001) Micheelsenite, (Ca,Y)3Al(PO3OH,CO3)(CO3)(OH)6·12H2O, a new mineral from Mont Saint-Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. N Jb Min Mh 337–351Google Scholar
  28. Merlino S, Orlandi P (2001) Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. Am Mineral 86:1293–1301CrossRefGoogle Scholar
  29. Moore AE, Taylor HFW (1970) Crystal structure of ettringite. Acta Cryst B26:386–393CrossRefGoogle Scholar
  30. Motzet H, Pöllmann H (1999) Synthesis and characterization of sulfite-containing AFm phases in the system CaO–Al2O3–SO2–H2O. Cement Concr Res 29:1005–1011CrossRefGoogle Scholar
  31. Nishio-Hamane D, Ohnishi M, Momma K, Shimobayashi N, Miyawaki R, Minakawa T, Inaba S (2015) Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan. Mineral Mag 79:413–423CrossRefGoogle Scholar
  32. Peacor DR, Dunn PJ, Duggan M (1983) Sturmanite, a ferric iron, boron analogue of ettringite. Can Mineral 21:705–709Google Scholar
  33. Pekov IV, Chukanov NV, Britvin SN, Kabalov YuK, Göttlicher J, Yapaskurt VO, Zadov AE, Krivovichev SV, Schüller W, Ternes B (2012) The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite–hielscherite solid-solution series. Mineral Mag 76:1133–1152CrossRefGoogle Scholar
  34. Pöllmann H, Kuzel H-J, Wenda R (1989) Compounds with ettringite structure. N Jb Min Abh 160:133–158Google Scholar
  35. Pushcharovsky DY, Lebedeva YS, Zubkova NV, Pasero M, Bellezza M, Merlino S, Chukanov NV (2004) Crystal structure of sturmanite. Can Mineral 42:723–729CrossRefGoogle Scholar
  36. Ravel B, Newville M (2005) Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  37. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122CrossRefGoogle Scholar
  38. Sims I, Huntley SA (2004) The thaumasite form of sulfate attack—breaking the rules. Cement Concr Compos 26:837–844CrossRefGoogle Scholar
  39. Skoblinskaya NN, Krasilnikov KG, Nikitina LV, Varlamov VP (1975) Changes in crystal structure of ettringite on dehydration. 2. Cement Concr Res 5:419–431CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
    • 2
    Email author
  • Natalia V. Zubkova
    • 2
  • Leonid A. Pautov
    • 3
  • Jörg Göttlicher
    • 4
  • Anatoly V. Kasatkin
    • 3
  • Konstantin V. Van
    • 5
  • Dmitriy A. Ksenofontov
    • 2
  • Igor V. Pekov
    • 2
  • Svetlana A. Vozchikova
    • 1
  • Dmitry Yu. Pushcharovsky
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of GeologyMoscow State University, Vorobievy GoryMoscowRussia
  3. 3.Fersman Mineralogical Museum of Russian Academy of SciencesMoscowRussia
  4. 4.Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation (IPS)Eggenstein-LeopoldshafenGermany
  5. 5.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations