Physics and Chemistry of Minerals

, Volume 46, Issue 4, pp 403–416 | Cite as

Reversible hydration/dehydration and thermal expansion of euchlorine, ideally KNaCu3O(SO4)3

  • Oleg I. SiidraEmail author
  • Artem S. Borisov
  • Evgeniya A. Lukina
  • Wulf Depmeier
  • Natalia V. Platonova
  • Marie Colmont
  • Diana O. Nekrasova
Original Paper


Anhydrous alkali copper sulfates constitute the most abundant group of mineral species from the Second Scoria Cone of the Great Tolbachik Fissure Eruption (1975–1976), a location being renowned for its great mineral diversity. Euchlorine, ideally KNaCu3O(SO4)3, is the prevalent mineral in the hot sulfate-rich zones of the fumaroles. In this work, its thermal expansion and hydration/dehydration behavior have been studied. The results of a structure refinement from new single-crystal diffraction data are also reported, and a description of the structure based on anion-centered coordination polyhedra is given. The strongly anisotropic character of the thermal expansion of euchlorine remains essentially unchanged up to its decomposition. The strongest α11 expansion is observed approximately perpendicular to the alkali interlayer of the structure, whereas the minimal α22 and α33 thermal expansion coefficients are parallel to the plane of {Cu3O(SO4)3}2− layers. Hydration experiments controlled by X-ray powder diffraction reveal a very complex behavior with multicomponent phase formation. Remarkably, upon heating stepwise dehydration occurs, whereby the complex mixture of hydrated sulfates gradually reverses and becomes again essentially single-phased anhydrous euchlorine.


Euchlorine Sulfates X-ray diffraction Evolution of minerals Reversible hydration/dehydration Thermal expansion Exhalative minerals Tolbachik volcano. 



The authors thank Gerald Giester and Christian Lengauer for helpful suggestions which improved the manuscript. This work was financially supported by the Russian Science Foundation through the grant 16-17-10085. Technical support by the SPbSU X-ray Diffraction and Geomodel Resource Centers is gratefully acknowledged.

Supplementary material

269_2018_1011_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3917 KB)


  1. Bacon GE, Titterton DH (1975) Neutron diffraction studies of CuSO4(H2O)5 und CuSO4(D2O)5. Z Kristallogr Cryst Mater 141:330–341CrossRefGoogle Scholar
  2. Bruker (2017) TOPAS. Version 6. Bruker AXS, KarlsruheGoogle Scholar
  3. Bruker-AXS (2017) APEX2. Version 2014.11-0, Madison, Wisconsin, USAGoogle Scholar
  4. Chou I-M, Seal RR, Wang A (2013) The stability of sulfate and hydrated sulfate minerals near ambient conditions and their significance in environmental and planetary sciences. J Asian Earth Sci 62:734–758CrossRefGoogle Scholar
  5. Cloutis EA, Craig MA, Mustard JF, Kruzelecky RV, Jamroz WR, Scott A, Bish DL, Poulet F, Bibring J-P, King PL (2007) Stability of hydrated minerals on Mars. Geoph Res Lett 34:L20202CrossRefGoogle Scholar
  6. Domnina MI, Filatov SK, Zyuzyukina II, Vergasova LP (1986) Thermal deformation of tenorite. Inorg Mater 22:1992–1996Google Scholar
  7. Effenberger H (1985) Cu2O(SO4), dolerophanite: Refinement of the crystal structure with a comparison of OCu(II)4 tetrahedra in inorganic compounds. Monatsh Chem 116:927–931CrossRefGoogle Scholar
  8. Filatov SK, Semenova TF, Vergasova LP (1992) Types of polymerization of tetrahedra [OCu4]6+ in compounds with additional atoms of oxygen. Dokl Akad Nauk SSSR 322:536–539Google Scholar
  9. Firsova VA, Bubnova RS, Filatov SK (2011) Program for the thermal expansion tensor determination for crystalline materials. Institute of silicate chemistry of Russian Academy of Science, St. PetersburgGoogle Scholar
  10. Giester G, Zemann J (1987) The crystal structure of the natrochalcite-type compounds Me+Cu2(OH)(ZO4)2H2O (Me+ = Na, K, Rb; Z = S, Se), with special reference to the hydrogen bonds. Z Kristallogr 179:431–442CrossRefGoogle Scholar
  11. Giester G, Lengauer CL, Redhammer G (1994) Characterization of the FeSO4·H2O–CuSO4·H2O solid-solution series, and the nature of poitevinite, (Cu,Fe)SO4·H2O. Can Mineral 32:873–884Google Scholar
  12. Hawthorne FC, Ferguson RB (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallogr B31:1753–1755CrossRefGoogle Scholar
  13. Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA, Yang H (2008) Mineral evolution. Am Mineral 93:1693–1720CrossRefGoogle Scholar
  14. Krivovichev SV (2013) Structural complexity of minerals: Information storage and processing in the mineral world. Mineral Mag 77:275–326CrossRefGoogle Scholar
  15. Krivovichev SV, Semenova TF, Filatov SK (1998) High-temperature crystal chemistry of georgbokiite. Crystallogr Rep 43:1003–1006Google Scholar
  16. Krivovichev SV, Filatov SK, Burns PC (2002) The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. Can Mineral 40:1185–1190CrossRefGoogle Scholar
  17. Krivovichev SV, Mentré O, Siidra OI, Colmont M, Filatov SK (2013) Anion-centered tetrahedra in inorganic compounds. Chem Rev 113:6459–6535CrossRefGoogle Scholar
  18. Merlino S, Perchiazzi N, Franco D (2003) Brochantite, Cu4SO4(OH)6: OD character, polytypism and crystal structures. Eur J Mineral 15:267–275CrossRefGoogle Scholar
  19. Nazarchuk EV, Siidra OI, Agakhanov AA, Lukina EA, Avdontseva EY, Karpov GA (2018) Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulphate mineral from the Tolbachik volcano. Mineral Mag. (in press)Google Scholar
  20. Paufler P, Filatov SK, Bubnova RS, Krzhizhanovskaya MG (2014) Synthesis and thermal behaviour of pauflerite, β-VOSO4, and its α-modification. Z Kristallogr Cryst Mater 229:725–729CrossRefGoogle Scholar
  21. Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Kasatkin AV, Kuznetsov AM, Pushcharovsky DY (2013) Kobyashevite, Cu5(SO4)2(OH)6·4H2O, a new devilline-group mineral from the Vishnevye Mountains, South Urals, Russia. Mineral Petrol 107:201–210CrossRefGoogle Scholar
  22. Pekov IV, Siidra OI, Chukanov NV, Yapaskurt VO, Belakovskiy DI, Murashko MN, Sidorov EG (2014a) Kaliochalcite, KCu2(SO4)2[(OH)(H2O)], a new tsumcorite-group mineral from the Tolbachik volcano, Kamchatka, Russia. Eur J Mineral 26:597–604CrossRefGoogle Scholar
  23. Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Chukanov NV, Lykova IS, Savelyev DP, Sidorov EG, Pushcharovsky DYu (2014b) Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik Volcano, Kamchatka, Russia. Can Mineral 52:699–716CrossRefGoogle Scholar
  24. Portales RL, Jiménez GC, Michel HC, Amador DOR, Mikuš KV, Kump P, Rosa G (2015) Understanding copper speciation and mobilization in soils and mine tailings from “Mineral La Aurora” in central Mexico: contributions from Synchrotron techniques. B Soc Geol Mex 67:447–456Google Scholar
  25. Robinson DJ, Kennard CHL (1972) Potassium hexa-aquacopper(II) sulfate, CuH12K2O14S2 (neutron). Cryst Struct Commun 1:185–188Google Scholar
  26. Scordari F, Stasi F (1990) The crystal structure of euchlorine, NaKCu3O(SO4)3. Neues Jahrb Mineral Abh 161:241–253Google Scholar
  27. Sheldrick GM (2015) New features added to the refinement program SHELXL since 2008 are described and explained. Acta Crystallogr C71:3–8Google Scholar
  28. Siidra OI, Nazarchuk EV, Zaitsev AN, Lukina EA, Avdontseva EY, Vergasova LP, Vlasenko NS, Filatov SK, Turner R, Karpov GA (2017) Copper oxosulphates from fumaroles of Tolbachik Vulcano: puninite, Na2Cu3O(SO4)3—a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. Eur J Mineral 29:499–510CrossRefGoogle Scholar
  29. Siidra OI, Nazarchuk EV, Agakhanov AA, Lukina EA, Zaitsev AN, Turner R, Filatov SK, Pekov IV, Karpov GA, Yapaskurt VO (2018a) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Miner Petrol 112:123–134CrossRefGoogle Scholar
  30. Siidra OI, Lukina EA, Nazarchuk EV, Depmeier W, Bubnova RS, Agakhanov AA, Avdontseva EY, Filatov SK, Kovrugin VM (2018b) Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik Volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2. Mineral Mag 82:257–274CrossRefGoogle Scholar
  31. Starova GL, Filatov SK, Fundamenskii VS, Vergasova LP (1991) The crystal structure of fedotovite, K2Cu3O(SO4)3. Mineral Mag 55:613–616CrossRefGoogle Scholar
  32. Szynkiewicz A, Borrok DM, Vaniman DT (2014) Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars. Earth Planet Sci Lett 393:14–25CrossRefGoogle Scholar
  33. Ting VP, Henry PF, Schmidtmann M, Wilson CC, Weller MT (2009) In situ neutron powder diffraction and structure determination in controlled humidities. Chem Commun 2009:7527–7529CrossRefGoogle Scholar
  34. Vergasova LP, Filatov SK (2016) A study of volcanogenic exhalation mineralization. J Volcanol Seismol 10:71–85CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CrystallographySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Nanomaterials Research Center, Kola Science CenterRussian Academy of SciencesMurmansk RegionRussia
  3. 3.Institut für Geowissenschaften der Universität KielKielGermany
  4. 4.X-ray Diffraction Resource Center, St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Unité de Catalyse et Chimie du Solide (UCCS)UMR 8181 CNRS, Université Lille 1 Sciences et TechnologiesVilleneuve d’ASCQFrance

Personalised recommendations