Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 4, pp 371–383 | Cite as

Thermally induced cation redistribution in fluor-elbaite and Fe-bearing tourmalines

  • Ferdinando BosiEmail author
  • Henrik Skogby
  • Ulf Hålenius
Original Paper
  • 87 Downloads

Abstract

An Fe-rich fluor-elbaite was thermally treated in air and hydrogen atmosphere up to 800 °C to study potential changes in Fe- and Al-ordering over the octahedrally coordinated Y and Z sites. Overall, the experimental data (structural refinement, electron and ion microprobe, Mössbauer, infrared and optical absorption spectroscopy) show that thermal treatment of fluor-elbaite results in an increase of Fe contents at the Z site balanced by an increase of Al at the Y site. On the basis of this and previous experimental studies on Fe–Mg–Al-bearing tourmalines, it can be stated that the intersite Fe–Mg–Al exchange rates are significant at temperatures around 700–800 °C. Thermal treatment results in an increase of ca. 0.30 Fe atoms per formula unit at the Z site compensated by a similar increase of (Mg + Al) at the Y site, following the exchange reaction YFe + Z(Mg + Al) → ZFe + Y(Mg + Al). Since the tourmaline nomenclature is based on the occupancy of ions at each structural site, the intersite Fe–Mg–Al ordering may determine the tourmaline species. This means that effectively the name associated with a given composition may be a function of the sample thermal history.

Keywords

Tourmaline Fluor-elbaite Crystal structure refinement Infrared spectroscopy Mössbauer spectroscopy Optical absorption spectroscopy Thermal treatment Cation redistribution 

Notes

Acknowledgements

Funding by Sapienza University of Rome (Prog. Università 2017 to F.B.) and the Swedish Research Council (H.S.) is gratefully acknowledged. E. Tillmanns and D.J. Henry are thanked for their constructive comments.

Supplementary material

269_2018_1009_MOESM1_ESM.cif (18 kb)
Supplementary material 1 (CIF 17 KB)
269_2018_1009_MOESM2_ESM.cif (17 kb)
Supplementary material 2 (CIF 16 KB)
269_2018_1009_MOESM3_ESM.cif (19 kb)
Supplementary material 3 (CIF 18 KB)
269_2018_1009_MOESM4_ESM.cif (18 kb)
Supplementary material 4 (CIF 17 KB)
269_2018_1009_MOESM5_ESM.cif (19 kb)
Supplementary material 5 (CIF 18 KB)
269_2018_1009_MOESM6_ESM.cif (18 kb)
Supplementary material 6 (CIF 17 KB)
269_2018_1009_MOESM7_ESM.cif (19 kb)
Supplementary material 7 (CIF 18 KB)
269_2018_1009_MOESM8_ESM.cif (18 kb)
Supplementary material 8 (CIF 18 KB)

References

  1. Andreozzi GB, Bosi F, Longo M (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. Am Mineral 93:658–666CrossRefGoogle Scholar
  2. Bosi F (2013) Bond-valence constraints around the O1 site of tourmaline. Mineral Mag 77:343–351CrossRefGoogle Scholar
  3. Bosi F (2018) Tourmaline crystal chemistry. Am Mineral 103:298–306CrossRefGoogle Scholar
  4. Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability. Am Mineral 92:1054–1063CrossRefGoogle Scholar
  5. Bosi F, Andreozzi GB, Federico M, Graziani G, Lucchesi S (2005) Crystal chemistry of the elbaite-schorl series. Am Mineral 90:1784–1792CrossRefGoogle Scholar
  6. Bosi F, Andreozzi GB, Skogby H, Lussier AJ, Abdu Y, Hawthorne FC (2013) Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. Am Mineral 98:297–303CrossRefGoogle Scholar
  7. Bosi F, Andreozzi GB, Hålenius U, Skogby H (2015a) Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineral Mag 79:515–528CrossRefGoogle Scholar
  8. Bosi F, Skogby H, Lazor P, Reznitskii L (2015b) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Miner 42:441–453CrossRefGoogle Scholar
  9. Bosi F, Skogby H, Balić-Žunić T (2016a) Thermal stability of extended clusters in dravite: a combined EMP, SREF and FTIR study. Phys Chem Mineral 43:395–407CrossRefGoogle Scholar
  10. Bosi F, Skogby H, Hålenius U (2016b) Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications. Contrib Mineral Petrol 171:47CrossRefGoogle Scholar
  11. Bosi F, Reznitskii L, Hålenius U, Skogby H (2017a) Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia. Eur J Mineral 29:457–472CrossRefGoogle Scholar
  12. Bosi F, Cámara F, Ciriotti ME, Hålenius U, Reznitskii L, Stagno V (2017b) Crystal-chemical relations and classification problems of tourmalines belonging to the oxy-schorl–oxy-dravite–bosiite–povondraite series. Eur J Mineral 29:445–455CrossRefGoogle Scholar
  13. Bosi F, Naitza S, Skogby H, Secchi F, Conte AM, Cuccuru S, Hålenius U, De La Rosa N, Kristiansson P, Nilsson EJC, Ros L, Andreozzi GB (2018a) Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): crystal-chemical study and petrological constraints. Lithos 308–309:395–411CrossRefGoogle Scholar
  14. Bosi F, Skogby H, Hålenius U, Ciriotti M (2018b) Experimental cation redistribution in the tourmaline lucchesiite, CaFe2 + 3Al6(Si6O18)(BO3)3(OH)3O. Phys Chem Mineral 45:621–632CrossRefGoogle Scholar
  15. Burns PC, MacDonald DJ, Hawthorne FC (1994) The crystal chemistry of manganese-bearing elbaite. Can Mineral 32:31–41Google Scholar
  16. Deloule E, Chaussidon M, Allé P (1992) Instrumental limitations for isotope ratios measurements with a Cameca IMS 3f ion microprobe: the example of H, B, S, Sr. Chem Geol 101:187–192Google Scholar
  17. Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306CrossRefGoogle Scholar
  18. Ertl A, Tillmanns E, Ntaflos T, Francis C, Giester G, Körner W, Hughes JM, Lengauer C, Prem M (2008) Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to the pressure–temperature conditions of formation. Eur J Mineral 20:881–888CrossRefGoogle Scholar
  19. Ertl A, Rossman GR, Hughes JM, London D, Wang Y, O’Leary JA, Dyar MD, Prowatke S, Ludwig T, Tillmanns E (2010) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California, USA: A detailed investigation. Am Mineral 95:24–40CrossRefGoogle Scholar
  20. Ertl A, Kolitsch U, Dyar MD, Hughes JM, Rossman GR, Pieczka A, Henry DJ, Pezzotta F, Prowatke S, Lengauer CL, Körner W, Brandstatter F, Francis CA, Prem M, Tillmans E (2012a) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: evidence from Fe2+- and Mn2+-rich tourmaline. Am Mineral 97:1402–1416CrossRefGoogle Scholar
  21. Ertl A, Schuster R, Hughes JM, Ludwig T, Meyer H-P, Finger F, Dyar MD, Ruschel K, Rossman GR, Klötzli U, Brandstätter F, Lengauer CL, Tillmanns E (2012b) Li-bearing tourmalines in Variscan pegmatites from the Moldanubian nappes, Lower Austria. Eur J Mineral 24:695–715CrossRefGoogle Scholar
  22. Ertl A, Henry DJ, Tillmanns E (2018) Tetrahedral substitutions in tourmaline: a review. Eur J Mineral 30:465–470CrossRefGoogle Scholar
  23. Federico M, Andreozzi GB, Lucchesi S, Graziani G, César-Mendes J (1998) Crystal chemistry of tourmalines. I. Chemistry, compositional variations and coupled substitutions in the pegmatite dikes of the Cruzeiro mine, Minas Gerais, Brazil. Can Mineral 36:415–431Google Scholar
  24. Ferrow E (2009) Non-integral hybrid ions in tourmaline: buffering and geo-thermometry. Eur J Mineral 21:241–250CrossRefGoogle Scholar
  25. Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256CrossRefGoogle Scholar
  26. Fuchs Y, Lagache M, Linares J (1998) Fe-tourmaline synthesis under different T and ƒO2 conditions. Am Mineral 83:525–534CrossRefGoogle Scholar
  27. Gatta GD, Bosi F, McIntyre GJ, Skogby H (2014) First accurate location of two proton sites in tourmaline: a single-crystal neutron diffraction study of oxy-dravite. Mineral Mag 78:681–692CrossRefGoogle Scholar
  28. Gonzalez-Carreño T, Fernandez M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Mineral 15:452–460CrossRefGoogle Scholar
  29. Grew ES, Krivovichev SV, Hazen RM, Hystad G (2016) Evolution of structural complexity in boron minerals. Can Mineral 54:125–143CrossRefGoogle Scholar
  30. Hawthorne FC (2016) Short-range atomic arrangements in minerals. I: the minerals of the amphibole, tourmaline and pyroxene supergroups. Eur J Mineral 28:513–536CrossRefGoogle Scholar
  31. Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Mineral Petrol 112:203–218CrossRefGoogle Scholar
  32. Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anvitz LM (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy and geochemistry, vol 33. Mineralogical Society of America, Chantilly, Virginia, pp 503–557CrossRefGoogle Scholar
  33. Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow B, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline supergroup minerals. Am Mineral 96:895–913CrossRefGoogle Scholar
  34. Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow B, Uher P, Pezzotta F (2013) Erratum Am Mineral 98:524Google Scholar
  35. Kutzschbach M, Wunder B, Rhede D, Koch-Müller M, Ertl A, Giester G, Heinrich W, Franz G (2016) Tetrahedral boron in natural and synthetic HP/UHP tourmaline: evidence from Raman spectroscopy, EMPA, and single-crystal XRD. Am Mineral 101:93–104CrossRefGoogle Scholar
  36. Libowitzky E (1999) Correlation of O-H stretching frequencies and O–H⋯O hydrogen bond lengths in minerals. Monatsh Chemie 130:1047–1059Google Scholar
  37. Lussier A, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: description and crystal structure. Am Mineral 101:355–361CrossRefGoogle Scholar
  38. Marschall HR, Korsakov AV, Luvizotto GL, Nasdala L, Ludwig T (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc 166:811–823CrossRefGoogle Scholar
  39. Mattson SM, Rossman GR (1984) Ferric iron in tourmaline. Phys Chem Mineral 11:225–234CrossRefGoogle Scholar
  40. Mattson SM, Rossman GR (1987) Fe2+-Fe3+ interactions in tourmaline. Phys Chem Mineral 14:163–171CrossRefGoogle Scholar
  41. Pieczka A, Kraczka J (2004) Oxidized tourmalines—a combined chemical, XRD and Mossbauer study. Eur J Mineral 16:309–321CrossRefGoogle Scholar
  42. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Plenum, New York, pp 31–75CrossRefGoogle Scholar
  43. Prescher C, McCammon C, Dubrowinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Cryst 45:329–331CrossRefGoogle Scholar
  44. Sheldrick GM (2013) SHELXL2013. University of Göttingen, GermanyGoogle Scholar
  45. Skogby H, Bosi F, Lazor P (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Mineral 39:811–816CrossRefGoogle Scholar
  46. Taran MN, Rossman GR (2002) High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline. Am Mineral 87:1148–1153CrossRefGoogle Scholar
  47. Taran MN, Lebedev AS, Platonov AN (1993) Optical absorption spectroscopy of synthetic tourmalines. Phys Chem Mineral 20:209–220CrossRefGoogle Scholar
  48. van Hinsberg VJ, Schumacher JC (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. Am Mineral 94:761–770CrossRefGoogle Scholar
  49. van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16CrossRefGoogle Scholar
  50. Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Am Mineral 101:970–985CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth SciencesSapienza University of RomeRomeItaly
  2. 2.Department of GeosciencesSwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations