Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 4, pp 361–369 | Cite as

Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2

  • Sergey N. BritvinEmail author
  • Mikhail N. Murashko
  • Yevgeny Vapnik
  • Yury S. Polekhovsky
  • Sergey V. Krivovichev
  • Oleg S. Vereshchagin
  • Natalia S. Vlasenko
  • Vladimir V. Shilovskikh
  • Anatoly N. Zaitsev
Original Paper

Abstract

Zuktamrurite, FeP2, is a new mineral, a natural iron diphosphide found in the pyrometamorphic rocks of the Hatrurim Formation, in the southern part of the Negev Desert, Israel and on the Transjordan Plateau, Jordan. The mineral occurs as irregular grains up to 50 µm in size associated with murashkoite, FeP, and barringerite, (Fe,Ni)2P. In reflected light, zuktamrurite is white with a distinct bluish tint. It is non-pleochroic but exhibits distinct anisotropy in bluish colours. Reflectance values for the IMA COM recommended wavelengths are [Rmax/Rmin, % (λ, nm)]: 50.40/47.20 (470); 49.16/46.23 (546); 48.97/46.16 (589); 49.40/46.40 (650). It is brittle. Electron microprobe analysis of the holotype specimen gave the following chemical composition (wt%, average of 5 points): Fe 40.23; Ni 7.97; P 51.70; total 99.90. The empirical formula calculated on the basis of 3 apfu is (Fe0.86Ni0.16)1.02P1.98 corresponding to FeP2. Zuktamrurite is orthorhombic, space group Pnnm, unit cell parameters refined from the single-crystal data: a 4.9276(6), b 5.6460(7), c 2.8174(4) Å, V 78.38(1) Å3, Z = 2. Dx = 5.003 g cm−3. The crystal structure was solved and refined to R1 = 0.0121 on the basis of 109 unique reflections with I > 2σ(I). The strongest lines of the powder X-ray diffraction pattern [(d, Å) (I, %) (hkl)]: 3.714 (54) (110); 2.820 (31) (020); 2.451 (100) (120, 101); 2.242 (55) (111); 1.760 (37) (211). The mineral is named for the Zuk-Tamrur cliff (Dead Sea) located nearby the type locality, the Halamish Wadi, southern Negev Desert, Israel. Zuktamrurite is the phosphide analogue of löllingite (loellingite), FeAs2. It is the most phosphorus-rich phosphide ever found in nature.

Keywords

Iron phosphide FeP2 New mineral Zuktamrurite Marcasite Loellingite or löllingite Fe–Ni–P system Pyrometamorphism Phosphorylation Meteorite Dead Sea transform 

Notes

Acknowledgements

This research was supported by the Russian Science Foundation (Grant 18-17-00079). The authors thank X-ray Diffraction Centre and “Geomodel” Resource Centre of Saint-Petersburg State University for providing instrumental and computational resources. The authors gratefully acknowledge Dr. Chris Stanley and the anonymous reviewer for the helpful comments.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

269_2018_1008_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 108 KB)

References

  1. Berzelius JJ (1832) Undersökning af en vid Bohumiliz I Böhmen funnen jernmassa. Kongelige Svenska Vetenskaps-Academiens Handlingar, pp 106–119Google Scholar
  2. Boda G, Stenstrom B, Sagredo V, Beckman O, Carlsson B, Rundqvist S (1971) Magnetic and electric properties of iron phosphide single crystals. Phys Scr 4:132–134CrossRefGoogle Scholar
  3. Brahmia M, Bennecer B, Hamidani A (2013) Electronic and optical properties of the orthorhombic compounds FeX2 (X = P, As and Sb). Mater Sci Eng B 178:1249–1256CrossRefGoogle Scholar
  4. Britvin SN, Kolomensky VD, Boldyreva MM, Bogdanova AN, Kretser YuL, Boldyreva ON, Rudashevsky NS (1999) Nickelphosphide (Ni,Fe)3P—the nickel analog of schreibersite. Zapiski VMO 128:64–72 (Russian) Google Scholar
  5. Britvin SN, Rudashevsky NS, Krivovichev SV, Burns PC, Polekhovsky YuS (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Mineral 87:1245–1249CrossRefGoogle Scholar
  6. Britvin SN, Murasko MN, Vapnik Ye P, Krivovichev YuS SV (2015) Earth’s phosphides in Levant and insights into the source of Archaean prebiotc phosphorus. Sci Rep 5:8355CrossRefGoogle Scholar
  7. Britvin SN, Krivovichev SV, Armbruster T (2016) Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites, and some insights into merrillite-tuite transformation in shergottites. Eur J Mineral 28:125–136CrossRefGoogle Scholar
  8. Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017a) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proc Russ Mineral Soc 146(3):104–107Google Scholar
  9. Britvin SN, Murashko MN, Vapnik E, Polekhovsky YuS, Krivovichev SV (2017b) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol Ore Deposit 59:619–625CrossRefGoogle Scholar
  10. Brostigen G, Kjekshus A, Romming C (1973) Compounds with the marcasite type crystal structure VIII. Redetermination of the prototype. Acta Chem Scand 27:2791–2796CrossRefGoogle Scholar
  11. Bruker I (2008) APEX2, SAINT, TWINABS and CELL_NOW. Bruker AXS Inc, MadisonGoogle Scholar
  12. Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem Commun 2006:2344–2346CrossRefGoogle Scholar
  13. Bryant DE, Greenfield D, Walshaw RD, Johnson BRG, Herschy B, Smith C, Pasek MA, Telford R, Scowen I, Munshi T, Edwards HGM, Cousins CR, Crawford IA, Kee TP (2013) Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim Cosmochim Acta 109:90–112CrossRefGoogle Scholar
  14. Buchwald VF (1984) Handbook of iron meteorites. University of California Press, BerkeleyGoogle Scholar
  15. Burdett JK (1982) Electronic influences on the crystal chemistry of transition metal-main group MX and MX2 compounds. J Solid State Chem 45:399–410CrossRefGoogle Scholar
  16. Burg A, Starinsky A, Bartov Y, Kolodny Y (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Isr J Earth Sci 40:107–124Google Scholar
  17. Buseck PR (1969) Phosphide from meteorites: barringerite, a new iron–nickel mineral. Science 165:169–171CrossRefGoogle Scholar
  18. Christy AG (2018) Quantifying lithophilicity, chalcophilicity and siderophilicity. Eur J Mineral 30:193–204CrossRefGoogle Scholar
  19. Clarke RS Jr, Goldstein JI (1978) Schreibersite growth and its influence on the metallography of coarse-structured iron meteorites. Smithson Contrib Earth Sci 21:1–80Google Scholar
  20. Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Boctor NZ, Prewitt CT (2008) High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core. Geophys Res Lett 35:L10301CrossRefGoogle Scholar
  21. Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Boctor NZ, Prewitt CT (2009) Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe–Ni phosphides in planetary cores. J Geophys Res 114:B03201CrossRefGoogle Scholar
  22. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341CrossRefGoogle Scholar
  23. Drabek M (2006) Phosphide solid-solutions within the metal-rich portion of the quaternary system Co–Fe–Ni–P at 800 °C, and mineralogical implications. Can Mineral 44:399–408CrossRefGoogle Scholar
  24. Galuskin EV, Galuskina IO, Kusz J, Armbruster T, Marzec KM, Dzierzanowski P, Murashko M (2014) Vapnikite Ca3UO6 a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineral Mag 78:571–581CrossRefGoogle Scholar
  25. Galuskin EV, Galuskina IO, Gfeller F, Kruger B, Kusz J, Vapnik Y, Dulski M, Dzierzanowski P (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new “old” mineral from the Negev Desert, Israel, and the ternesitesilicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. Eur J Mineral 28:105–123CrossRefGoogle Scholar
  26. Galuskin EV, Gfeller F, Galuskina IO, Armbruster T, Krzatala A, Vapnik Y, Kusz J, Dulski M, Gardocki M, Gurbanov AG, Dzierzanowski P (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineral Mag 81:499–514CrossRefGoogle Scholar
  27. Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV (2014) Harmunite CaFe2O4: a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. Am Mineral 99:965–975CrossRefGoogle Scholar
  28. Galuskina IO, Galuskin EV, Vapnik Y, Prusik K, Stasiak M, Dzierżanowski P, Murashko M (2017a) Gurimite, Ba3(VO4)2 and hexacelsian, BaAl2Si2O8—two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineral Mag 81:1009–1019CrossRefGoogle Scholar
  29. Galuskina IO, Galuskin EV, Prusik K, Vapnik Y, Juroszek R, Jeżak L, Murashko M (2017b) Dzierżanowskite, CaCu2S2—a new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineral Mag 81:1073–1085CrossRefGoogle Scholar
  30. Geller YI, Burg A, Halicz L, Kolodny Y (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chem Geol 334:25–36CrossRefGoogle Scholar
  31. Gritsenko YuD, Spiridonov EM (2005) Minerals of continuous series rammelsbergite-löllingite and rammelsbergite-safflorite in metamorphic-hydrothermal veins of Norilsk ore field. Proc Russ Mineral Soc 134(1):53–68Google Scholar
  32. Gross H (1977) The mineralogy of the Hatrurim Formation, Israel. Bull Geol Surv Israel 70:1–80Google Scholar
  33. Gu T-T, Wu X, Qin S, Liu J, Li Y-C, Zhang Y-F (2012) High-pressure and high-temperature in situ X-ray diffraction study of FeP2 up to 70 GPa. Chin Phys Lett 29:026102/1–026102/3Google Scholar
  34. Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation be the mineral schreibersite. Sci Rep 5:17198CrossRefGoogle Scholar
  35. Gur D, Steinitz G, Kolodny Y, Starinsky A, McWilliams M (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem Geol 122:171–184CrossRefGoogle Scholar
  36. Holseth H, Kjekshus A (1968) Compounds with the marcasite type crystal structure. I. Compositions of the binary pnictides. Acta Chem Scand 22:3273–3283CrossRefGoogle Scholar
  37. Hulliger F, Mooser E (1965) Semiconductivity in pyrite, marcasite, and arsenopyrite phases. Phys Chem Solids 26:429–433CrossRefGoogle Scholar
  38. Khesin B, Vapnik Y, Itkis S (2010) Case history. Geophysical evidence of deep hydrocarbon flow in Mottled Zone areas, Dead Sea transform zone. Geophysics 75:B91–B101CrossRefGoogle Scholar
  39. Kitadai N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153CrossRefGoogle Scholar
  40. Kjekshus A, Rakke T, Andresen AF (1974) Compounds with the marcasite type crystal structure. IX. Structural data for FeAs2, FeSe2, NiAs2, NiSb2, and CuSe2. Acta Chem Scand 28:996–1000CrossRefGoogle Scholar
  41. Kjekshus A, Peterzens PG, Rakke T, Andresen AF (1979) Compounds with the marcasite type crystal structure. XIII. Structural and magnetic properties of CrtFe1−tAs2, CrtFe1−tSb2, Fe1−tNitAs2 and Fe1−tNitSb2. Acta Chem Scand A 33:469–480CrossRefGoogle Scholar
  42. La Cruz NL, Qasim D, Abbott-Lyon H, Pirim C, McKee AD, Orlando T, Gull M, Lindsay D, Pasek MA (2016) The evolution of the surface of the mineral schreibersite in prebiotic chemistry. Phys Chem Chem Phys 18:20160–20167CrossRefGoogle Scholar
  43. Larsson E (1965) An X-ray investigation of the Ni–P system and the crystal structures of NiP and NiP2. Ark Kemi 23:335–356Google Scholar
  44. Lazoryak BI, Belik AA, Kotov RN, Leonidov IA, Mitberg EB, Karelina VV, Kellerman DG, Stefanovich SY, Avetisov AK (2003) Reduction and re-oxidation behavior of calcium iron phosphate, Ca9Fe(PO4)7. Chem Mater 15:625–631CrossRefGoogle Scholar
  45. Lutz HD, Müller B (1991) Lattice vibration spectra. LXVIII. Single-crystal Raman spectra of marcasite-type iron chalcogenides and pnictides, FeX2 (X = S, Se, Te; P, As, Sb). Phys Chem Miner 18:265–268CrossRefGoogle Scholar
  46. Lutz HD, Schneider G, Kliche G (1983) Chalcides and pnictides of group VIII transition metals: far-infrared spectroscopic studies on compounds MX2, MXY, and MY2 with pyrite, marcasite, and arsenopyrite structure. Phys Chem Miner 9:109–114CrossRefGoogle Scholar
  47. Lutz HD, Jung M, Waeschenbach G (1987) Kristallstrukturen des Löllingits FeAs2 und des Pyrits RuTe2. Z Anorg Allg Chem 554:87–91CrossRefGoogle Scholar
  48. Makovicky E (2006) Crystal structures of sulfides and other chalcogenides. Rev Mineral Geochem 61:7–125CrossRefGoogle Scholar
  49. Murashko MN, Chukanov NV, Mukhanova AA, Vapnik E, Britvin SN, Krivovichev SV, Polekhovskii YuS, Ivakin YuD (2010) Barioferrite BaFe3+ 12O19—a new magnetoplumbite-group mineral from Hatrurim formation, Israel. Zapiski VMO 139:22–31 (Russian) Google Scholar
  50. Novikov I, Vapnik Y, Safonova I (2013) Mud volcano origin of the Mottled Zone, South Levant. Geosci Front 4:597–619CrossRefGoogle Scholar
  51. Pasek MA (2017) Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335CrossRefGoogle Scholar
  52. Pasek MA, Gull M, Herschy B (2017) Phosphorylation on the early earth. Chem Geol 475:149–170CrossRefGoogle Scholar
  53. Patera A (1847) Die resultate der Chemischen Analyse des Arva’er Meteoreisens (Magura). Berichte über die Mitteilungen von Freunden der Naturwissenschaften in Wien 3: 69–71Google Scholar
  54. Pirim C, Pasek MA, Sokolov DA, Sidorov AN, Gann RD, Orlando TM (2014) Investigation of schreibersite and intrinsic oxidation products from Sikhote-Alin, Seymchan, and Odessa meteorites and Fe3P and Fe2NiP synthetic surrogates. Geochim Cosmochim Acta 140:259–274CrossRefGoogle Scholar
  55. Pratesi G, Bindi L, Moggi-Cecci V (2006) Icosahedral coordination of phosphorus in the crystal structure of melliniite, a new phosphide mineral from the Northwest Africa 1054 acapulcoite. Am Mineral 91:451–454CrossRefGoogle Scholar
  56. Scheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8Google Scholar
  57. Scott HP, Huggins S, Frank MR, Maglio SJ, Martin CD, Meng Y, Santillan J, Williams Q (2007) Equation of state and high-pressure stability of Fe3P-schreibersite: implications for phosphorus storage in planetary cores. Geophys Res Lett 34:L06302CrossRefGoogle Scholar
  58. Seryotkin YV, Sokol EV, Kokh SN (2012) Natural pseudowollastonite: crystal structure, associated minerals, geological context. Lithos 134–135:75–90CrossRefGoogle Scholar
  59. Sharygin VV, Vapnik Y, Sokol EV, Kamenetsky VS, Shagam R (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. ACROFII program with abstracts. Nanjing University PH, Nanjing, pp 189–192Google Scholar
  60. Sharygin VV, Lazic B, Armbruster TM, Murashko MN, Wirth R, Galuskina IO, Galuskin EV, Vapnik Y, Britvin SN, Logvinova AM (2013) Shulamitite Ca3TiFe3+AlO8—a new perovskite-related mineral from Hatrurim Basin, Israel. Eur J Mineral 25:97–111CrossRefGoogle Scholar
  61. Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites, II. Phosphorite rocks. Earth Planet Sci Lett 64:405–416CrossRefGoogle Scholar
  62. Sokol EV, Novikov IS, Vapnik Y, Sharygin VV (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Dokl Earth Sci 413A:474–480CrossRefGoogle Scholar
  63. Sokol EV, Seryotkin YV, Kokh SN, Vapnik Y, Nigmatulina EN, Goryainov SV, Belogub EV, Sharygin VV (2015) Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineral Mag 79:583–596CrossRefGoogle Scholar
  64. Stoe, Cie (2006) WinXPOW v. 1.07. Stoe & Cie, Darmstadt, GermanyGoogle Scholar
  65. Tossell JA (1983) A qualitative molecular orbital study of the stability of polyanions in mineral structures. Phys Chem Miner 9:115–123CrossRefGoogle Scholar
  66. Vapnik Y, Sharygin V, Sokol E, Shagam R (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Rev Eng Geol XVIII:133–153Google Scholar
  67. Vapnik Y, Palchika V, Galuskina I, Banasik K, Krzykawski T (2018) Mineralogy, chemistry and rock mechanic parameters of katoite-bearing rock from the Hatrurim Basin, Israel. J Afr Earth Sci 147:322–330CrossRefGoogle Scholar
  68. Weber D, Bischoff A (1994) Grossite (CaAl4O7)—a rare phase in terrestrial rocks and meteorites. Eur J Mineral 6:591–594CrossRefGoogle Scholar
  69. Wu X, Kanzaki M, Qin S, Steinle-Neumann G, Dubrovinsky L (2009) Structural study of FeP2 at high pressure. High Press Res 29:235–244CrossRefGoogle Scholar
  70. Wu X, Steinle-Neumann G, Qin S, Kanzaki M, Dubrovinsky L (2010) Pressure-induced phase transitions of AX2-type iron pnictides: an ab initio study. J Phys Condens Matter 21:185403/1–185403/6Google Scholar
  71. Zachariáš J, Morávek P, Gadas P, Pertoldová J (2014) The Mokrsko-West gold deposit, Bohemian Massif, Czech Republic: mineralogy, deposit setting and classification. Ore Geol Rev 58:238–263CrossRefGoogle Scholar
  72. Zhao Z, Liu L, Zhang S, Yu T, Li F, Yang G (2017) Phase diagram, stability and electronic properties of an Fe–P system under high pressure: a first principles study. RSC Adv 7:15986–15991CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sergey N. Britvin
    • 1
    • 2
    Email author
  • Mikhail N. Murashko
    • 1
  • Yevgeny Vapnik
    • 3
  • Yury S. Polekhovsky
    • 1
  • Sergey V. Krivovichev
    • 1
    • 2
  • Oleg S. Vereshchagin
    • 1
  • Natalia S. Vlasenko
    • 4
  • Vladimir V. Shilovskikh
    • 4
  • Anatoly N. Zaitsev
    • 1
  1. 1.Institute of Earth SciencesSaint-Petersburg State UniversitySt. PetersburgRussia
  2. 2.Nanomaterials Research CenterKola Science Center of Russian Academy of SciencesApatityRussia
  3. 3.Department of Geological and Environmental SciencesBen-Gurion University of the NegevBeershebaIsrael
  4. 4.Geomodel Resource CenterSaint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations