Advertisement

Physics and Chemistry of Minerals

, Volume 46, Issue 3, pp 245–258 | Cite as

Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite–lithiophilite

  • M. N. Taran
  • M. Núñez Valdez
  • I. EfthimiopoulosEmail author
  • J. Müller
  • H. J. Reichmann
  • M. Wilke
  • M. Koch-Müller
Original Paper
  • 135 Downloads

Abstract

Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76–80 GPa in a natural triphylite–lithiophilite sample with chemical composition M1LiM2Fe2+0.708Mn0.292PO4 (theoretical composition M1LiM2Fe2+0.5Mn0.5PO4). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents ν1 (~ 9330 cm−1) and ν2 (~ 7110 cm−1), resulting from the electronic spin-allowed transition 5T2g → 5Eg of octahedral HSM2Fe2+. Both ν1 and ν2 bands shift non-linearly with pressure to higher energies up to ~ 55 GPa. In the optical absorption spectrum measured at ~ 81 GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360 cm−1 appears, superimposed on the tail of the high-energy ligand-to-metal O2− → Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition 1A1g → 1T1g of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P–O symmetric stretching modes to lower frequencies at ~ 76 GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of M2Mn2+ simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite M2Fe2+ end-member, in qualitative agreement with our experimental observations.

Keywords

Phosphates Triphylite Raman Infrared Optical absorption spectroscopy High pressure Spin transition DFT 

Notes

Acknowledgements

We thank Dr. Christian Schmidt at GFZ for the photos. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) Funds Ko1260/18 and Wi2000/10. MNV gratefully acknowledges the computing time granted by the John von Neumann Institute for Computing (NIC) and provided on the supercomputer JURECA at Jülich Supercomputing Center (JSC) under Project ID hpo24. Some computations were also performed at the GFZ Linux cluster GLIC.

References

  1. Badro J (2014) Spin transitions in mantle minerals. Annu Rev Earth Planet Sci 42:231–248.  https://doi.org/10.1146/annurev-earth-042711-105304 CrossRefGoogle Scholar
  2. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979.  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  3. Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Cerantola V, McCammon C, Kupenko I et al (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. Am Miner 100:2670–2681CrossRefGoogle Scholar
  5. Fehr KT, Hochleitner R, Schmidbauer E, Schneider J (2007) Mineralogy, Mössbauer spectra and electrical conductivity of triphylite Li(Fe2+,Mn2+)PO4. Phys Chem Miner 34:485–494CrossRefGoogle Scholar
  6. Fransolet A-M, Antenucci D, Speetjens J-M, Tarte P (1984) An X-ray determinative method for the divalent cation ratio in the triphylite–lithiophilite series. Miner Mag 48:373–381CrossRefGoogle Scholar
  7. Frost RL, Xi Y, Scholz R et al (2013) Raman and infrared spectroscopic characterization of the phosphate mineral lithiophilite—LiMnPO4. Phosphorus Sulfur Silicon Relat Elem 188:1526–1534CrossRefGoogle Scholar
  8. Geller S, Durand J-L (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325–331CrossRefGoogle Scholar
  9. Goncharov AF, Struzhkin VV, Jacobsen SD (2006) Reduced radiative conductivity of low-spin (Mg, Fe)O in the lower mantle. Science 312:1205–1208.  https://doi.org/10.1126/science.1125622 CrossRefGoogle Scholar
  10. Goncharov AF, Haugen BD, Struzhkin VV et al (2008) Radiative conductivity in the Earth’s lower mantle. Nature 456:231–234CrossRefGoogle Scholar
  11. Goncharov AF, Beck P, Struzhkin VV et al (2009) Thermal conductivity of lower-mantle minerals. Phys Earth Planet Inter 174:24–32CrossRefGoogle Scholar
  12. Gossner B, Strunz H (1932) Über strukturelle Beziehungen zwischen Phosphaten (Triphyline) und Silikaten (Olivin) und über die chemische Zusammensetzung von Ardennit. Z Krist 83:415–421Google Scholar
  13. Hazen RM, Finger LW (1982) Comparative crystal chemistry. Wiley, New YorkGoogle Scholar
  14. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  15. Keppler H, Smyth JR (2005) Optical and near infrared spectra of ringwoodite to 21.5 GPa: implications for radiative heat transport in the mantle. Am Miner 90:1209–1212CrossRefGoogle Scholar
  16. Keppler H, McCammon CA, Rubie DC (1994) Crystal-field and charge-transfer spectra of (Mg, Fe)SiO3 perovskite. Am Miner 79:1215–1218Google Scholar
  17. Keppler H, Kantor I, Dubrovinsky LS (2007) Optical absorption spectra of ferropericlase to 84 GPa. Am Miner 92:433–436CrossRefGoogle Scholar
  18. Klotz S, Chervin J-C, Munsch P, Marchand G Le (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:75413CrossRefGoogle Scholar
  19. Kohn W, Sham LJ (1964) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  20. Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15CrossRefGoogle Scholar
  21. Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens matter 54:11169–11186.  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  22. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758CrossRefGoogle Scholar
  23. Langer K, Taran MN, Fransolet A-M (2006) Electronic absorption spectra of phosphate minerals with olivine-type structures: I. Members of the triphylite–lithiophilite series, M1[6]LiM2[6](Fex 2+Mn1 – x 2+)[PO4]. Eur J Miner 18:337–344CrossRefGoogle Scholar
  24. Lavina B, Dera P, Downs RT et al (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett 36:2–5.  https://doi.org/10.1029/2009GL039652 CrossRefGoogle Scholar
  25. Lavina B, Dera P, Downs RT et al (2010a) Effect of dilution on the spin pairing transition in rhombohedral carbonates. High Press Res 30:224–229CrossRefGoogle Scholar
  26. Lavina B, Dera P, Downs RT et al (2010b) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:64110CrossRefGoogle Scholar
  27. Li Z, Shinno I (1997) Next neighbor effects in triphylite and related phosphate minerals. Miner J 19:99–107CrossRefGoogle Scholar
  28. Lin J-F, Vanko G, Jacobsen SD et al (2007) Spin transition zone in Earth’s lower mantle. Science 317:1740–1743.  https://doi.org/10.1126/science.1144997 CrossRefGoogle Scholar
  29. Lin J, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275.  https://doi.org/10.1002/rog.20010.1.INTRODUCTION CrossRefGoogle Scholar
  30. Lobanov SS, Goncharov AF, Litasov KD (2015) Optical properties of siderite (FeCO3) across the spin transition: crossover to iron-rich carbonates in the lower mantle. Am Miner 100:1059–1064CrossRefGoogle Scholar
  31. Lobanov SS, Holtgrewe N, Goncharov AF (2016) Reduced radiative conductivity of low spin FeO6-octahedra in FeCO3 at high pressure and temperature. Earth Planet Sci Lett 449:20–25CrossRefGoogle Scholar
  32. McCammon C, Glazyrin K, Kantor A et al (2013) Iron spin state in silicate perovskite at conditions of the Earth’s deep interior. High Press Res 33:663–672CrossRefGoogle Scholar
  33. Ming X, Wang X-L, Du F et al (2012) First-principles study of pressure-induced magnetic transition in siderite FeCO3. J Alloy Comp 510:L1–L4CrossRefGoogle Scholar
  34. Momma K, Izumi F (2008) VESTA: a three dimensional visualization system for electronic and structural analysis. J Appl Cryst 41:653–658CrossRefGoogle Scholar
  35. Mrosko M, Koch-Müller M, Schade U (2011) In-situ mid/far micro-FTIR spectroscopy to trace pressure-induced phase transitions in strontium feldspar and wadsleyite. Am Miner 96:1748–1759CrossRefGoogle Scholar
  36. Müller J, Speziale S, Efthimiopoulos I et al (2016) Raman spectroscopy of siderite at high pressure: evidence for a sharp spin transition. Am Miner 101:2638–2644.  https://doi.org/10.2138/am-2016-5708 CrossRefGoogle Scholar
  37. Müller J, Efthimiopoulos I, Jahn SA, Koch-Müller M (2017) Effect of temperature on the pressure-induced spin transition in siderite and iron-bearing magnesite: a Raman spectroscopy study. Eur J Miner 29:785.  https://doi.org/10.1127/ejm/2017/0029-2645 CrossRefGoogle Scholar
  38. Núñez Valdez MN, Efthimiopoulos I, Taran M et al (2018) Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite. Phys Rev B 97:184405CrossRefGoogle Scholar
  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  40. Raju AR, Reddy KM, Reddy BJ (1983) Optical and EPR measurements on triphylite. Proc Indian Natl Sci Acad 49A:662–668Google Scholar
  41. Santamaria-Perez D, Thomson A, Segura A et al (2016) Metastable structural transformations and pressure-induced amorphization in natural (Mg, Fe)2SiO4 olivine under static compression: a Raman spectroscopic study. Amer Miner 101:1642–1650CrossRefGoogle Scholar
  42. Shankland TJ, Duba AJ, Woronow A (1974) Pressure shifts of optical absorption bands in iron-bearing garnet, spinel, olivine, pyroxene, and periclase. J Geophys Res 79:3273–3282CrossRefGoogle Scholar
  43. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925CrossRefGoogle Scholar
  44. Shinno I (1981) A Mössbauer study of ferric iron in olivine. Phys Chem Miner 7:91–95CrossRefGoogle Scholar
  45. Solomatova NV, Jackson JM, Sturhahn W et al (2016) Equation of state and spin crossover of (Mg, Fe)O at high pressure, with implications for explaining topographic relief at the core-mantle boundary. Am Miner 101:1084–1093CrossRefGoogle Scholar
  46. Speziale S, Milner a, Lee VE et al (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci USA 102:17918–17922.  https://doi.org/10.1073/pnas.0508919102 CrossRefGoogle Scholar
  47. Syassen K (2008) Ruby under pressure. High Press Res 28:75–126CrossRefGoogle Scholar
  48. Takemura K (2001) Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. J Appl Phys 89:662–668CrossRefGoogle Scholar
  49. Taran MN, Koch-Müller M (2006) Octahedral cation ordering in Mg, Fe2+-olivine. An optical absorption spectroscopic study. Phys Chem Miner 33:511–518CrossRefGoogle Scholar
  50. Taran MN, Matsyuk SS (2013) Fe2+, Mg-distribution among non-equivalent structural sites M1 and M2 in mantle olivines: an optical spectroscopy study. Phys Chem Miner 40:309–318CrossRefGoogle Scholar
  51. Taran MN, Ohashi H, Koch-Muller M (2008) Optical spectroscopic study of synthetic NaScSi2O6–CaNiSi2O6 pyroxenes at normal and high pressures. Phys Chem Miner 35:117–127CrossRefGoogle Scholar
  52. Taran MN, Müller J, Friedrich A, Koch-Müller M (2017a) High-pressure optical spectroscopy study of natural siderite. Phys Chem Miner 44:537–546CrossRefGoogle Scholar
  53. Taran MN, Müller J, Friedrich A, Koch-Müller M (2017b) High-pressure transition of Fe2+ from low- to high-spin electronic state in siderite: optical absorption study. Miner J 39:3–23Google Scholar
  54. Thompson RM, Downs RT (2001) Quantifying distortion from ideal closest-packing in a crystal structure with analysis and application. Acta Crystallogr B 57:119–127CrossRefGoogle Scholar
  55. Tsuchiya T, Wentzcovitch RM, da Silva CRS, de Gironcoli S (2006) Spin transition in magnesiowüstite in Earth’s lower mantle. Phys Rev Lett 96:198501.  https://doi.org/10.1103/PhysRevLett.96.198501 CrossRefGoogle Scholar
  56. Umemoto K, Wentzcovitch RMM, Yu YG, Requist R (2008) Spin transition in (Mg, Fe)SiO3 perovskite under pressure. Earth Planet Sci Lett 276:198–206CrossRefGoogle Scholar
  57. Weis C, Sternemann C, Cerantola V et al (2017) Pressure driven spin transition in siderite and magnesiosiderite single crystals. Sci Rep 7:16526CrossRefGoogle Scholar
  58. Williams Q, Knittle E, Reichlin R et al (1990) Structural and electronic properties of Fe2SiO4-fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res 95:21549–21563CrossRefGoogle Scholar
  59. Zhou F, Cococcioni M, Marianetti CA et al (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70:235121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Academy of Sciences UkraineInstitute for Geochem. Mineral and Ore FormationKievUkraine
  2. 2.Deutsches GeoForschungsZentrum GFZPotsdamGermany
  3. 3.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations