Physics and Chemistry of Minerals

, Volume 46, Issue 3, pp 215–227 | Cite as

Single-crystal X-ray diffraction of grunerite up to 25.6 GPa: a new high-pressure clinoamphibole polymorph

  • Tommy YongEmail author
  • Przemyslaw Dera
  • Dongzhou Zhang
Original Paper


High-pressure single-crystal X-ray diffraction experiments were conducted on natural grunerite crystals with composition (Fe5.237Mg1.646Ca0.061Mn0.051Na0.015Ti0.002Cr0.001K0.001)(Si7.932Al0.083)O22(OH)2, using a synchrotron X-ray source. Grunerite has C2/m symmetry at ambient conditions. The samples were compressed at 298 K in a diamond-anvil cell to a maximum pressure of 25.6(5) GPa. We observe a previously described phase transition from C2/m (α) to P21/m (β) to take place at 7.4(1) GPa, as well as a further transition from P21/m (β) to C2/m (γ) at 19.2(3) GPa. The second-order Birch–Murnaghan equation of state fit to our compressional data, yielded the values V0 = 914.7(7) Å3 and K0 = 78(1) GPa for α-grunerite, V0 = 926(5) Å3 and K0 = 66(4) GPa for β-grunerite and V0 = 925(27) Å3 and K0 = 66(13) GPa for γ-grunerite. The β–γ phase transition produces a greater degree of kinking in the double silicate chains of tetrahedra accompanied by a discontinuous change in the a and c unit cell parameters and the monoclinic β angle. At 22.8(4) GPa the O5–O6–O5 kinking angle of the new high-pressure C2/m phase is 137.5(4)°, which is the lowest reported for any monoclinic amphibole. This study is the first structural report to show the existence of three polymorphs within an amphibole group mineral. The high-pressure γ-phase illustrates the parallel structural relations and phase transformation behavior of both monoclinic single and double chain silicates.


Amphibole Phase transition High pressure Single-crystal X-ray diffraction Diamond anvil cell Synchrotron source 



The project was supported by the National Science Foundation Division of Earth Sciences Geophysics Grant No. 1722969. Portions of the X-ray diffraction work were conducted using the X-ray Atlas instrument at the University of Hawaii, funded by NSF EAR Instrumentation and Facilities Grant 1541516. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-1128799) and Department of Energy—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Supplementary material

269_2018_999_MOESM1_ESM.cif (248 kb)
Supplementary material 1 (CIF 248 KB)
269_2018_999_MOESM2_ESM.cif (46 kb)
Supplementary material 2 (CIF 45 KB)
269_2018_999_MOESM3_ESM.cif (47 kb)
Supplementary material 3 (CIF 47 KB)
269_2018_999_MOESM4_ESM.cif (44 kb)
Supplementary material 4 (CIF 44 KB)
269_2018_999_MOESM5_ESM.cif (44 kb)
Supplementary material 5 (CIF 43 KB)
269_2018_999_MOESM6_ESM.cif (49 kb)
Supplementary material 6 (CIF 48 KB)
269_2018_999_MOESM7_ESM.cif (66 kb)
Supplementary material 7 (CIF 66 KB)
269_2018_999_MOESM8_ESM.cif (44 kb)
Supplementary material 8 (CIF 44 KB)
269_2018_999_MOESM9_ESM.cif (51 kb)
Supplementary material 9 (CIF 51 KB)
269_2018_999_MOESM10_ESM.cif (47 kb)
Supplementary material 10 (CIF 47 KB)
269_2018_999_MOESM11_ESM.cif (94 kb)
Supplementary material 11 (CIF 93 KB)


  1. Agrusta R, Hunen J, Goes S (2014) The effect of metastable pyroxene on the slab dynamics. Geophys Res Lett 41:8800–8808CrossRefGoogle Scholar
  2. Alvaro M, Nestola F, Ballaran TB, Cámara F, Domeneghetti MC, Tazzoli V (2010) High-pressure phase transition of a natural pigeonite. Am Miner 95:300–311CrossRefGoogle Scholar
  3. Angel RJ (2000) High-pressure structural phase transitions. Rev Miner Geochem 39:85–104CrossRefGoogle Scholar
  4. Arlt T, Armbruster T (1997) The temperature-dependent P21/c-C2/c phase transition in the clinopyroxene kanoite MnMg[Si2O6]: a single-crystal X-ray and optical study. Eur J Miner 9:953–964CrossRefGoogle Scholar
  5. Arlt T, Angel RJ, Miletich R, Armbruster T, Peters T (1998) High-pressure P21/c–C2/c phase transitions in clinopyroxenes: influence of cation size and electronic structure. Am Miner 83:1176–1181CrossRefGoogle Scholar
  6. Arlt T, Kunz M, Stolz J, Armbruster T, Angel RJ (2000) P-T-X data on P21/c-clinopyroxenes and their displacive phase transitions. Contrib Miner Petrol 138:35–45CrossRefGoogle Scholar
  7. Boehler R, De Hantsetters K (2004) New anvil designs in diamond-cells. High Press Res 24:391–396CrossRefGoogle Scholar
  8. Boffa Ballaran T, Angel RJ, Carpenter MA (2000) High-pressure transformation behaviour of the cummingtonite-grunerite solid solution. Eur J Miner 12:1195–1213CrossRefGoogle Scholar
  9. Brown G, Prewitt C, Papike J, Sueno S (1972) A comparison of the structures of low and high pigeonite. J Geophys Res 77:5778–5789CrossRefGoogle Scholar
  10. Carpenter M (1982) Amphibole microstructures: some analogies with phase transformations in pyroxenes. Miner Mag 46:395–397CrossRefGoogle Scholar
  11. Comodi P, Mellini M, Ungaretti L, Zanazzi PF (1991) Compressibility and high pressure structure refinement of tremolite, pargasite and glaucophane. Eur J Miner 3:485–499CrossRefGoogle Scholar
  12. Comodi P, Ballaran TB, Zanazzi PF, Capalbo C, Zanetti A, Nazzareni S (2010) The effect of oxo-component on the high-pressure behavior of amphiboles. Am Miner 95:1042CrossRefGoogle Scholar
  13. Dera P (2007) GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector. GeoSoilEnviroCARS, ArgonneGoogle Scholar
  14. Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484CrossRefGoogle Scholar
  15. Dewaele A, Torrent M, Loubeyre P, Mezouar M (2008) Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations. Phys Rev B 78:104102CrossRefGoogle Scholar
  16. Downs RT (2003) Topology of the pyroxenes as a function of temperature, pressure, and composition as determined from the procrystal electron density. Am Miner 88:556–566CrossRefGoogle Scholar
  17. Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer. Am Miner 83:952–969CrossRefGoogle Scholar
  18. Finger LW (1969) The crystal structure and cation distribution of a grunerite. Miner Soc Am Spec Pap 2:95–100Google Scholar
  19. Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578CrossRefGoogle Scholar
  20. Ganguly J, Freed AM, Saxena SK (2009) Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity. Phys Earth Planet Inter 172:257–267CrossRefGoogle Scholar
  21. Gonzalez-Platas J, Alvaro M, Nestola F, Angel R (2016) EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382CrossRefGoogle Scholar
  22. Hawthorne FC, Oberti R (2007) Amphiboles: crystal chemistry. Rev Miner Geochem 67:1–54CrossRefGoogle Scholar
  23. Hirschmann M, Evans BW, Yang H (1994) Composition and temperature dependence of Fe–Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction. Am Miner 79:862–877Google Scholar
  24. Hugh-Jones D, Woodland A, Angel R (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Miner 79:1032–1041Google Scholar
  25. Iezzi G, Liu Z, Della Ventura G (2006) Synchrotron infrared spectroscopy of synthetic Na(NaMg)Mg5Si8O22(OH)2 up to 30 GPa: Insight on a new high-pressure amphibole polymorph. Am Miner 91:479–482CrossRefGoogle Scholar
  26. Iezzi G, Liu Z, Della Ventura G (2009) Synthetic ANaB(NaxLi1−xMg1)CMg5Si8O22(OH)2 (with x = 0.6, 0.2 and 0) P21/m amphiboles at high pressure: a synchrotron infrared study. Phys Chem Miner 36:343–354CrossRefGoogle Scholar
  27. Iezzi G, Tribaudino M, Della Ventura G, Margiolaki I (2011) The high-temperature P21/m → C2/m phase transitions in synthetic amphiboles along the richterite–(BMg)–richterite join. Am Miner 96:353CrossRefGoogle Scholar
  28. Konzett J, Sweeney RJ, Thompson AB, Ulmer P (1997) Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa. J Petrol 38:537–568CrossRefGoogle Scholar
  29. Law AD, Whittaker EJW (1980) Rotated and extended model structures in amphiboles and pyroxenes. Miner Mag 43:565–574CrossRefGoogle Scholar
  30. Nestola F, Ballaran TB, Ohashi H (2008) The high-pressure C2/c–P21/c phase transition along the LiAlSi2O6–LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484CrossRefGoogle Scholar
  31. Nestola F, Pasqual F, Welch MD, Oberti R (2012) The effects of composition upon the high-pressure behaviour of amphiboles: compression of gedrite to 7 GPa and a comparison with anthophyllite and proto-amphibole. Miner Mag 76:987CrossRefGoogle Scholar
  32. Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Miner Petrol 135:18–40CrossRefGoogle Scholar
  33. Papike JJ, Cameron M (1976) Crystal chemistry of silicate minerals of geophysical interest. Rev Geophys 14:37–80CrossRefGoogle Scholar
  34. Papike J, Ross M (1970) Gedrites-crystal structures and intracrystalline cation distributions. Am Miner 55:1945–1972Google Scholar
  35. Prewitt CT, Downs RT (1998) High-pressure crystal chemistry. Rev Miner 37:283–318Google Scholar
  36. Prewitt CT, Papike JJ, Ross M (1970) Cummingtonite: a reversible, nonquenchable transition from P21/m to C2/m symmetry. Earth Planet Sci Lett 8:448–450CrossRefGoogle Scholar
  37. Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the advanced photon source. High Press Res 28:273–292CrossRefGoogle Scholar
  38. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767CrossRefGoogle Scholar
  39. Sheldrick G (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122CrossRefGoogle Scholar
  40. Smyth JR (1974) The high temperature crystal chemistry of clinohypersthene. Am Miner 59:1069–1082Google Scholar
  41. Sueno S, Cameron M, Papike J, Prewitt C (1973) The high temperature crystal chemistry of tremolite. Am Miner 58:649–664Google Scholar
  42. Tetzlaff M, Schmeling H (2000) The influence of olivine metastability on deep subduction of oceanic lithosphere. Phys Earth Planet Inter 120:29–38CrossRefGoogle Scholar
  43. Thompson EC, Campbell AJ, Liu Z (2016) In-situ infrared spectroscopic studies of hydroxyl in amphiboles at high pressure. Am Miner 101:706CrossRefGoogle Scholar
  44. Tribaudino M, Prencipe M, Nestola F, Hanfland M (2001) A P21/c–C2/c high-pressure phase transition in Ca0.5Mg1.5Si2O6 clinopyroxene. Am Miner 86:807–813CrossRefGoogle Scholar
  45. Tribaudino M, Nestola F, Meneghini C, Bromiley G (2003) The high-temperature P2/c1–C2/c phase transition in Fe-free Ca-rich P21/c clinopyroxenes. Phys Chem Miner 30:527–535CrossRefGoogle Scholar
  46. Wallace M, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Miner Petrol 44:1–19CrossRefGoogle Scholar
  47. Warren B (1930) II. The structure of tremolite H2Ca2Mg5(SiO3)8. Z Kristalogr Cryst Mater 72:42–57Google Scholar
  48. Warren В, Modell D (1930) 11. The structure of anthophyllite H2Mg7(SiO3)8. Z Kristalogr Cryst Mater 75:161–178Google Scholar
  49. Welch MD, Graham CM (1992) An experimental study of glaucophanic amphiboles in the system Na2O–MgO–Al2O3–SiO2–SiF4 (NMASF): some implications for glaucophane stability in natural and synthetic systems at high temperatures and pressures. Contrib Miner Petrol 111:248–259CrossRefGoogle Scholar
  50. Welch MD, Cámara F, Ventura GD, Iezzi G (2007) Non-ambient in situ studies of amphiboles. Rev Miner Geochem 67:223–260CrossRefGoogle Scholar
  51. Welch MD, Gatta D, Rotiroti N (2011) The high-pressure behavior of orthorhombic amphiboles. Am Miner 96:623CrossRefGoogle Scholar
  52. Whittaker E (1960) The crystal chemistry of the amphiboles. Acta Crystallogr A 13:291–298CrossRefGoogle Scholar
  53. Yang H, Prewitt CT (2000) Chain and layer silicates at high temperatures and pressures. Rev Miner Geochem 41:211–255CrossRefGoogle Scholar
  54. Yang H, Hazen RM, Prewitt CT, Finger LW, Ren L, Hemley RJ (1998) High-pressure single-crystal X-ray diffraction and infrared spectroscopic studies of the C2/m–P21/m phase transition in cummingtonite. Am Miner 83:288–299CrossRefGoogle Scholar
  55. Zanazzi PF, Nestola F, Pasqual D (2010) Compressibility of protoamphibole: a high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite. Am Miner 95:1758CrossRefGoogle Scholar
  56. Zhang L, Ahsbahs H, Kutoglu A, Hafner SS (1992) Compressibility of grunerite. Am Miner 77:480–483Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geology and Geophysics, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaHonoluluUSA
  2. 2.Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at MānoaHonoluluUSA

Personalised recommendations