Structural investigations of neodymium incorporation in calcium stannate perovskite CaSnO3

  • Jules GoethalsEmail author
  • Chloé Fourdrin
  • Martine Tarrida
  • Ali Bedidi
  • Frédéric Hatert
  • Stéphanie Rossano
Original Paper


Samples of calcium stannate perovskite (CaSnO3) doped with a variable Nd content were synthesized by solid-state reaction in the system (1 − x)CaSnO3 − xNd2O3. The synthesized compounds were characterized by means of electron microprobe, powder X-ray diffraction, single-crystal X-ray diffraction and µ-Raman spectroscopy. The incorporation of Nd in the CaSnO3 Pbnm structure leads to the formation of a complex (Ca1 − 2x Nd2x)(Sn1 − xCax)O3 perovskite. The A sublattice contains a random distribution of Ca and Nd in the whole range of composition of this system. For x < 0.28, the structure is Pbnm with Ca and Sn randomly distributed in the B sublattice. For x > 0.28 a symmetry change occurs; the structure turns into rock salt type P21/n. In this latter case half of the octahedral sites are fully occupied by Sn and the other half is randomly occupied by Sn and Ca. For x = 0.28, both structures are present in the sample. The presence of a Raman two modes behavior of A1g symmetry located near 700 cm− 1 coupled with the continuous linear evolution of the lattice parameters with Nd incorporation supports the proposed substitution mechanism.


Perovskite Calcium stannate Neodymium Raman spectroscopy X-ray diffraction 



The authors are thankful to M. Fialin (Centre de Microanalyses Camparis, Université Pierre et Marie Curie, Paris VI) for his help with the electron microprobe, J-D Mertz (LRMH) and M. Duc (IFSTTAR) for their help with DRX, O. Majérus (IRCP) for her help with Raman Spectroscopy; and B. Mihailova, G. Wallez, F. Guyot for their stimulating discussions.

Supplementary material

269_2018_993_MOESM1_ESM.cif (84 kb)
Supplementary material 1 (CIF 83 KB)
269_2018_993_MOESM2_ESM.cif (95 kb)
Supplementary material 2 (CIF 95 KB)


  1. Animitsa I, Iakovleva A, Belova K (2016) Electrical properties and water incorporation in A-site deficient perovskite La1 − xBaxNb3O9–0.5x. J Solid State Chem 238:156–161. CrossRefGoogle Scholar
  2. Aroyo MI, Kirov A, Capillas C et al (2006) Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Cryst A 62:115–128. CrossRefGoogle Scholar
  3. Aroyo MI, Perez-Mato JM, Orobengoa D et al (2011) Crystallography online: bilbao crystallographic server. Bulg Chem Commun. Google Scholar
  4. Azad AM, Shyan LLW, Alim MA (1999) Immittance response of CaSnO3 prepared by self-heat-sustained reaction. J Mater Sci 34:1175–1187. CrossRefGoogle Scholar
  5. Bassoli M, Buscaglia MT, Bottino C et al (2008) Defect chemistry and dielectric properties of Yb3+: CaTiO3 perovskite. J Appl Phys 103:14104. CrossRefGoogle Scholar
  6. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247CrossRefGoogle Scholar
  7. Buscaglia MT, Buscaglia V, Viviani M et al (2000) Influence of foreign ions on the crystal structure of BaTiO3. J Eur Ceram Soc 20:1997–2007. CrossRefGoogle Scholar
  8. Cairns DL, Reaney IM, Zheng H et al (2005) Synthesis and characterization of La(Co1/2Ti1/2) O3. J Eur Ceram Soc 25:433–439. CrossRefGoogle Scholar
  9. Canimoglu A, Garcia-Guinea J, Karabulut Y et al (2015) Cathodoluminescence properties of rare earth doped CaSnO3 phosphor. Appl Radiat Isot 99:138–145. CrossRefGoogle Scholar
  10. Carvajal JR (1990) FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, p 127Google Scholar
  11. Cerdà J, Arbiol J, Dezanneau G et al (2002) Perovskite-type BaSnO3 powders for high temperature gas sensor applications. Sens Actuators B Chem 84:21–25. CrossRefGoogle Scholar
  12. Cheng H, Lu Z (2008) Synthesis and gas-sensing properties of CaSnO3 microcubes. Solid State Sci 10:1042–1048. CrossRefGoogle Scholar
  13. Davies RA, Islam MS, Chadwick AV, Rush GE (2000) Cation dopant sites in the CaZrO3 proton conductor: a combined EXAFS and computer simulation study. Solid State Ionics 130:115–122. CrossRefGoogle Scholar
  14. Fu MS, Liu XQ, Chen XM (2008) Structure and microwave dielectric characteristics of Ca1 − xNd2x/3TiO3 ceramics. J Eur Ceram Soc 28:585–590. CrossRefGoogle Scholar
  15. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 28:3384–3392. CrossRefGoogle Scholar
  16. Hanajiri Y, Matsui T, Harita Y et al (1998) EXAFS analyses of CaTiO3 doped with Ce, Nd and U. Solid State Ionics 108:343–348. CrossRefGoogle Scholar
  17. Hatert F, Long GJ, Hautot D et al (2004) A structural, magnetic, and Mössbauer spectral study of several Na-Mn-Fe-bearing alluaudites. Phys Chem Miner 31(8):487–506CrossRefGoogle Scholar
  18. Howard CJ, Kennedy BJ, Woodward PM (2003) Research papers Ordered double perovskites ± a group-theoretical analysis research papers. Acta Cryst B 59:463–471. CrossRefGoogle Scholar
  19. King G, Woodward PM (2010) Cation ordering in perovskites. J Mater Chem 20:5785. CrossRefGoogle Scholar
  20. Knapp MC, Woodward PM (2006) A-site cation ordering in AA′BB′O6 perovskites. J Solid State Chem 179:1076–1085. CrossRefGoogle Scholar
  21. Larguem H (2006) Évolution structurale et réactivité chimique hors et sous irradiation de céramiques oxydes envisagées pour le confinement spécifique de radionucléides à vie longue. Université de Marne La ValléeGoogle Scholar
  22. Larson EM, Eller PG, Purson JD et al (1988) Synthesis and structural characterization of CaTiO3 doped with 0.05–7.5 mole% gadolinium(III). J Solid State Chem 73:480–487. CrossRefGoogle Scholar
  23. Lei B, Li B, Zhang H, Li W (2007) Preparation and luminescence properties of CaSnO3:Sm3+ phosphor emitting in the reddish orange region. Opt Mater (Amst) 29:1491–1494. CrossRefGoogle Scholar
  24. Levin I, Cockayne E, Lufaso MW et al (2006) Local structures and Raman spectra in the Ca(Zr,Ti)O3 perovskite solid solutions. Chem Mater 18:854–860. CrossRefGoogle Scholar
  25. Lowndes R, Azough F, Cernik R, Freer R (2012) Structures and microwave dielectric properties of Ca(1 − x)Nd2x/3TiO3 ceramics. J Eur Ceram Soc 32:3791–3799. CrossRefGoogle Scholar
  26. Lowndes R, Deluca M, Azough F, Freer R (2013) Probing structural changes in Ca(1 − x)Nd2x/3TiO3 ceramics by Raman spectroscopy. J Appl Phys 113:044115. CrossRefGoogle Scholar
  27. Maul J, Erba A, Santos IMG et al (2015) In silico infrared and Raman spectroscopy under pressure: the case of CaSnO3 perovskite. J Chem Phys. Google Scholar
  28. McMillan P, Ross N (1988) The Raman spectra of several orthorhombic calcium oxide perovskites. Phys Chem Miner 16:21–28. CrossRefGoogle Scholar
  29. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, MoscowGoogle Scholar
  30. Momma K, Izumi F (2011) “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  31. Moraes APA, Filho GS, Freire PTC et al (2011) Structural and optical properties of rare earth–doped (Ba0.77Ca0.23)1 – x(Sm, Nd, Pr, Yb)xTiO3. J Appl Phys 109:124102. CrossRefGoogle Scholar
  32. Mouyane M, Womes M, Jumas JC et al (2011) Original electrochemical mechanisms of CaSnO3 and CaSnSiO5 as anode materials for Li-ion batteries. J Solid State Chem 184:2877–2886. CrossRefGoogle Scholar
  33. Orsi Gordo V, Tuncer Arslanli Y, Canimoglu A et al (2015) Visible to infrared low temperature luminescence of Er3+, Nd3+ and Sm3+ in CaSnO3 phosphors. Appl Radiat Isot 99:69–76. CrossRefGoogle Scholar
  34. Oxford Diffraction (2007) CrysAlis CCD and CrysAlis RED, version 1.71. Oxford Diffraction, OxfordGoogle Scholar
  35. Pang XL, Jia CH, Li GQ, Zhang WF (2011) Bright white upconversion luminescence from Er3+-Tm3+-Yb3+ doped CaSnO3 powders. Opt Mater (Amst) 34:234–238. CrossRefGoogle Scholar
  36. Redfern ST, Chen C-J, Kung J et al (2011) Raman spectroscopy of CaSnO3 at high temperature: a highly quasi-harmonic perovskite. J Phys Condens Matter 23:425401. CrossRefGoogle Scholar
  37. Ringwood AE (1985) Disposal of high-level nuclear wastes: a geological perspective. Mineral Mag 49:159–176. CrossRefGoogle Scholar
  38. Seiyama T, Yamazoe N, Arai H (1983) Ceramic humidity sensors. Sens Actuators 4:86–96CrossRefGoogle Scholar
  39. Shannon RD, Prewitt CT (1970) Revised values of effective ionic radii. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. Google Scholar
  40. Sheldrick GM (1993) SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, GöttingenGoogle Scholar
  41. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  42. Tarrida M, Larguem H, Madon M (2009) Structural investigations of (Ca,Sr)ZrO3 and Ca(Sn,Zr)O3 perovskite compounds. Phys Chem Miner 36:403–413. CrossRefGoogle Scholar
  43. Vance E, Day R, Zhang Z et al (1996) Charge compensation in Gd-doped CaTiO3. J Solid State Chem 124:77–82. CrossRefGoogle Scholar
  44. Vasala S, Karppinen M (2015) A2B’B"O6 perovskites: a review. Prog Solid State Chem 43:1–36. CrossRefGoogle Scholar
  45. Vegas A, Vallet-Regí M, González-Calbet JM, Alario-Franco MA (1986) The ASnO3 (A = Ca, Sr) Perovskites. Acta Crystallogr Sect B Struct Sci 42:167–172. CrossRefGoogle Scholar
  46. Xie J, Shi Y, Zhang F, Li G (2016) CaSnO3:Tb3+, Eu3+: a distorted-perovskite structure phosphor with tunable photoluminescence properties. J Mater Sci 51:7471–7479. CrossRefGoogle Scholar
  47. Zhang Z, Lumpkin GR, Howard CJ et al (2007) Structures and phase diagram for the system CaTiO3–La2/3TiO3. J Solid State Chem 180:1083–1092. CrossRefGoogle Scholar
  48. Zhao J, Ross NL, Angel RJ (2004) Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Phys Chem Miner 31:299–305. CrossRefGoogle Scholar
  49. Zhao S, Bai Y, Zhang W-F (2010) Electrochemical performance of flowerlike CaSnO3 as high capacity anode material for lithium-ion batteries. Electrochim Acta 55:3891–3896. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Paris-Est, LGE (EA 4508), UPEMLVMarne-la-ValléeFrance
  2. 2.Laboratoire de MinéralogieUniversité de LiègeLiègeBelgium

Personalised recommendations