Relative diffusivities of hydrous defects from a partially dehydrated natural olivine

  • Catherine ThoravalEmail author
  • Sylvie Demouchy
  • José Alberto Padrón-Navarta
Original Paper


The mechanisms of hydrogen mobility in nominally anhydrous minerals (NAMs) impact both the water storage in Earth’s mantle and its effective modification induced by mantle processes. Hydrogen can be stored in point defects in NAMs, and recent experimental studies in simple systems have shown that the diffusivity varies significantly from point defect to point defect. Here, a natural mantle-derived olivine from a peridotite xenolith (Pali-Aike in Chile) was analyzed by Fourier transform infrared spectroscopy (FTIR) to investigate if natural olivine can hold the signature of such site-specific diffusivity. The deconvolution of the spectra allows identifying 10 OH absorption bands; each band is attributed to a specific type of defect. The relative diffusivities associated with different defects were estimated and lead to the following results: (1) the OH bands from Group-I (3650–3500 cm−1) yield similar hydrogen diffusivities, except one band at 3598 cm−1, which yields hydrogen diffusivity five times slower than the others; (2) the OH bands from Group-II (3500–3100 cm−1) reveal heterogeneous hydrogen distribution, which is not compatible with a simple mechanism of ionic diffusion; (3) hydrogen diffusion along the [100] direction is five times faster than along [001] for all defects. The use of hydrogen concentration in olivine as a proxy for the deep water cycle requires detailed FTIR profiles to properly characterize ionic diffusion and its consequences on the bulk hydrogen concentration.


Olivine Hydrogen Diffusion Point defect FTIR 



The authors thank the editors, Roland Stalder for his constructive and in depth review, as well as two other reviewers.


  1. Bai Q, Kohlstedt DL (1992) Substantial hydrogen solubility in olivine and implications for water storage in the mantle. Nature 357:672–674CrossRefGoogle Scholar
  2. Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys Chem Miner 19:460–471CrossRefGoogle Scholar
  3. Balan E, Blanchard M, Lazzeri M, Ingrin J (2013) Contribution of interstitial OH groups to the incorporation of water in forsterite. Phys Chem Miner 41:105–114CrossRefGoogle Scholar
  4. Bali E, Bolfan-Casanova N, Koga K (2008) Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet Sci Lett 268:354–363CrossRefGoogle Scholar
  5. Bell DR, Rossman GR (1992) Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397CrossRefGoogle Scholar
  6. Beran A (1969) Über (OH)-Gruppen in olivin. Anzeiger—Österreichische Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche KlasseGoogle Scholar
  7. Beran A, Libowitzky E (2006) Water in natural mantle minerals II: olivine, garnet and accessory minerals. Rev Mineral Geochem 62:161–191CrossRefGoogle Scholar
  8. Beran A, Putnis A (1983) A model of the OH position in olivine, derived from infrared-spectroscopy investigations. Phys Chem Miner 9:57–60CrossRefGoogle Scholar
  9. Bercovici D, Karato SI (2003) Whole-mantle convection and the transition-zone water filter. Nature 425:39–44CrossRefGoogle Scholar
  10. Berry A, Hermann J, O’Neill HSC, Foran GJ (2005) Fringerprinting the water site in mantle olivine. Geology 33:869–872CrossRefGoogle Scholar
  11. Berry A, O’Neill HS, Hermann J, Scott DR (2007a) The infrared signature of water associated with trivalent cations in olivine. Earth Planet Sci Lett 261(1–2):134–142CrossRefGoogle Scholar
  12. Berry A, Walker AM, Hermann J, O’Neill HS, Foran GJ, Gale J (2007b) Titanium substitution mechanisms in forsterite. Chem Geol 242:176–186CrossRefGoogle Scholar
  13. Blanchard M, Ingrin J, Balan E, Kovács I, Withers AC (2017) Effect of iron and trivalent cations on OH defects in olivine. Am Miner 102:302–311CrossRefGoogle Scholar
  14. Cline II, Faul CJ, David UH, Berry EC, Jackson AJ, I (2018) Redox-influenced seismic properties of upper-mantle olivine. Nature 555:355CrossRefGoogle Scholar
  15. Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals, vol 1A, 2nd edn, orthosilicates. The geological society, LondonGoogle Scholar
  16. Demouchy S (2004) Thermodynamics and kinetics of hydrogen incorporation in olivine and wadsleyite. Dissertation Bayerisches Geoinstitut. Bayreuth, BayreuthGoogle Scholar
  17. Demouchy S, Bolfan-Casanova N (2016) Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240–243:402–425CrossRefGoogle Scholar
  18. Demouchy S, Mackwell SJ (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Miner 30:486–494CrossRefGoogle Scholar
  19. Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355CrossRefGoogle Scholar
  20. Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34:429–432CrossRefGoogle Scholar
  21. Demouchy S, Tommasi A, Barou F, Mainprice D, Cordier P (2012) Deformation of olivine in torsion under hydrous conditions. Phys Earth Planet Int 202–203:57–70Google Scholar
  22. Demouchy S, Thoraval C, Bolfan-Casanova N, Manthilake G (2016) Diffusivity of hydrogen in iron-bearing olivine at 3 GPa. Phys Earth Planet Int 260:1–13CrossRefGoogle Scholar
  23. Demouchy S, Shcheka S, Denis CMM, Thoraval C (2017) Subsolidus hydrogen partitioning between nominally anhydrous minerals in garnet-bearing peridotite. Am Mineral 102:1822–1831CrossRefGoogle Scholar
  24. Doucet LS, Peslier AH, Ionov DA, Brandon AD, Golovin AV, Goncharov AG, Ashchepkov IV (2014) High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim Cosmochim Ac 137:159–187CrossRefGoogle Scholar
  25. Faul UH, Cline II, David CJ, Berry EC, Jackson AJ, I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237CrossRefGoogle Scholar
  26. Férot A, Bolfan-Casanova N (2012) Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’supper mantle and nature of seismic discontinuities. Earth Planet Sci Lett 349–350:218–230CrossRefGoogle Scholar
  27. Ferriss E, Plank T, Walker D (2016) Site-specific hydrogen diffusion rates during clinopyroxene dehydration. Contrib Mineral Petrol 171:55CrossRefGoogle Scholar
  28. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  29. Gaetani GA, O’Leary JA, Koga KT, Hauri EH, Rose-Koga EF, Monteleone BD (2014) Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib Mineral Petrol 167:965CrossRefGoogle Scholar
  30. Girard J, Chen J, Raterron P, Holyoke CW (2013) Hydrolytic weakening of olivine at mantle pressure: evidence of [100](010) slip system softening from single-crystal deformation experiments. Phys Earth Planet Int 216:12–20CrossRefGoogle Scholar
  31. Hilchie L, Fedortchouk Y, Matveev S, Kopylova MG (2014) The origin of high hydrogen content in kimberlitic olivine: evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths. Lithos 202–203:429–441CrossRefGoogle Scholar
  32. Hirschmann MM (2006) Water, melting, and the deep earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  33. Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Miner 12:543–570CrossRefGoogle Scholar
  34. Jollands MC, Padrón-Navarta JA, Hermann J, O’Neill HSC (2016) Hydrogen diffusion in Ti-doped forsterite and the preservation of metastable point defects. Am Mineral 102:1822–1831Google Scholar
  35. Jung H, Karato SI (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463CrossRefGoogle Scholar
  36. Kohlstedt DL, Mackwell SJ (1999) Solubility and diffusion of “water” in silicate minerals. In: Wright K, Catlow R (ed) Microscopic properties and processes in minerals. Kluwer Academic Publishers, Dordrecht, pp 539–559CrossRefGoogle Scholar
  37. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol 123:345–357CrossRefGoogle Scholar
  38. Kovàcs I, O’Neill HSC, Hermann J, Hauri EH (2010) Site-specific infrared O–H absorption coefficients for water substitution into olivine. Am Minerol 95:292–299CrossRefGoogle Scholar
  39. Kröger FA, Vink HJ (1956) Relation between the concentrations of imperfections in crystallines solids. Solid State Phys 3:307–435CrossRefGoogle Scholar
  40. Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95:5079–5088CrossRefGoogle Scholar
  41. McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88(11–12):1825–1831CrossRefGoogle Scholar
  42. Miller GH, Rossman GR, Harlow GE (1987) The natural occurence of hydroxide in olivine. Phys Chem Miner 14:461–472CrossRefGoogle Scholar
  43. Padrón-Navarta JA, Hermann J (2017) A subsolidus olivine water solubility equation for the Earth’s upper mantle. J Geophys Res Solid Earth 122:9862–9880CrossRefGoogle Scholar
  44. Padrón-Navarta JA, Hermann J, O’Neill HS (2014) Site-specific hydrogen diffusion rates in forsterite. Earth Planet Sci Lett 392:100–112CrossRefGoogle Scholar
  45. Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: critically by addition of water ? Science 294:578–580CrossRefGoogle Scholar
  46. Skewes MA, Stern CR (1979) Petrology and geochemistry of alkali basalts and ultramafic inclusions from the Pali-aike volcanic field in southern Chile and the origine of the Patagonian plateau lavas. J Volcanol Geotherm Res 6:3–25CrossRefGoogle Scholar
  47. Stalder R, Skogby H (2007) Dehydration mechanisms in synthetic Fe-bearing enstatite. Eur J Mineral 19:201–216CrossRefGoogle Scholar
  48. Stern CR, Kilian R, Olker B, Hauri EH, Kurtis Kyser T (1999) Evidence from mantle xenoliths for relatively thin. Lithos 48:217–235CrossRefGoogle Scholar
  49. Thoraval C, Demouchy S (2014) Numerical models of ionic diffusion in one and three dimensions: application to dehydration of mantle olivine. Phys Chem Miner 41:709–723CrossRefGoogle Scholar
  50. Tielke JA, Zimmerman ME, Kohlstedt DL (2017) Hydrolytic weakening in olivine single crystals. J Geophys Res Solid Earth 122:3465–3479CrossRefGoogle Scholar
  51. Tollan PME, O’Neill HSC, Hermann J, Benedictus A, Arculus RJ (2015) Frozen melt–rock reaction in a peridotite xenolith from sub-arc mantle recorded by diffusion of trace elements and water in olivine. Earth Planet Sci Lett 422:169–181CrossRefGoogle Scholar
  52. Walker AM, Hermann J, Berry A, O’Neill HS (2007) Three water sites in the upper mantle olivine and the role of titanium in the water weakening mechanism. J Geophys Res 112:B05211Google Scholar
  53. Wood BJ (1995) The effect of H2O on the 410-kilometer seismic discontinuity. Science 268:74–76CrossRefGoogle Scholar
  54. Xia QK, Hao YT, Liu SC, Gu XY, Feng M (2013) Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: peridotite xenolith constraints. Gondwana Res 23:108–118CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Catherine Thoraval
    • 1
    Email author
  • Sylvie Demouchy
    • 1
  • José Alberto Padrón-Navarta
    • 1
  1. 1.Géosciences MontpellierUniversité de Montpellier and CNRSMontpellierFrance

Personalised recommendations