Physics and Chemistry of Minerals

, Volume 45, Issue 6, pp 549–562 | Cite as

Uranium as a possible criterion for the hydro-chemical alteration of betafite

  • Mohammad Hosseinpour Khanmiri
  • Svetlana Yu. Yanson
  • Edward V. Fomin
  • Anatoly V. Titov
  • Andrey V. Grebeniuk
  • Yury S. Polekhovsky
  • Roman V. Bogdanov
Original Paper


Hydro-chemical processes significantly alter the original composition of metamict minerals. In the work presented here, an attempt was made to reconstruct the chemical composition of betafite in the earlier stages of its geological history. The time scale is determined by the leaching rate of the isotope 238U, a process that takes its course in line with first-order kinetics, or something close to it. The leaching rate constant of this uranium isotope was assessed. Based on available data in the literature, the hydro-chemical behavior of various atoms in group A of betafite was analyzed. The chemical composition of the mineral was calculated taking into account the total charge of the cations that the betafite had at the time it was formed, or possibly the last time it was completely reformed as a result of diverse endogenic processes.


Metamict minerals Redox-state of uranium Chemical shift of X-ray Lα1- line Chemical weathering Leaching kinetic Half-leaching time Calculations of mineral formula 



This work is supported by the Russian Science Foundation grant No. 14-31-00022.


  1. Atencio D, Andrade MB, Christy AG, Giere R, Kartashov PM (2010) The pyrochlore supergroup of minerals, nomenclature. Can Mineral 48:673–698CrossRefGoogle Scholar
  2.  Bogdanov RV, Khrisanfov YV (2017) "Program for calculating the content of alpha-active nuclides using  radioactive tracers", Russian Federation, CERTIFICATE of the state registration of the computer program № 2017611127. Сlaim № 2016663187. Date of receipt: 02.12.2016.  Date of state registration in the Registry of computer programs: 19.01.2017.Google Scholar
  3. Bogdanov RV, Batrakov YF, Puchkova EV, Sergeev AS (1999) “Programme of natural analogues studies” and identification of the chemical state of uranium in natural substances. Radiochemistry 41(5):409–433 (Translated from Radiokhimiya (1999) 41(5):385–408) Google Scholar
  4. Bogdanov RV, Batrakov YF, Puchkova EV, Sergeev AS (2000) State of Uranium in Mineral Components of Uranium Ore Metasomatite. Radiochemistry 42(5):496–505 (Translated from Radiokhimiya (2000) 42(5):449–457 in Russian) Google Scholar
  5. Bogdanov RV, Batrakov YF, Puchkova EV, Sergeev AS (2002a) On the kinetics of natural leaching of 238U and 234U from rocks and minerals. Geochem Int 40(11):1056–1065 (Translated from Geokhimya (2002) 11:1167–1177) Google Scholar
  6. Bogdanov RV, Batrakov YF, Puchkova EV, Sergeev AS, Burakov BE (2002b) Study of natural minerals of U-pyrochlore type structure as analogues of plutonium ceramic waste form. In: BP McGrail, GA Cragnolino (eds) Mat. Res. Soc. Symp. Proc. 713. Scientific Basis for Nuclear Waste Management XXV, Boston, pp 295–301Google Scholar
  7. Bogdanov RV, Puchkova EV, Parnikov NG, Sergeev AS (2011) Radiogenic Uranium in Paragenetic Mineral Associations. Radiochemistry 53(6):651–661 (Translated from Radiokhimiya (2011) 53(6):549–558) CrossRefGoogle Scholar
  8. Bonotto DM, Andrews JN (2000) The transfer of uranium isotopes 234U and 238U to the waters interacting with carbonates from Mendip Hills area (England). Appl Radiat Isot 52:965–983CrossRefGoogle Scholar
  9. Bulakh AG, Zolotarev AA, Krivovichev VG (2014) Struktura, isomorphism, formuly, klassifikatsia mineralov. SPbGU, Sankt-Peterburg, 130 s. Structure, isomorphism, formulas and classification of minerals. St. Petersburg State University, St. Petersburg, pp 130 (in Russian) Google Scholar
  10. Burns PC (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can Mineral 43(6):1839–1894CrossRefGoogle Scholar
  11. Cao Q, Isakov AI, Liu X, Krivovichev SV, Burakov BE (2014) A study of natural metamict yttrium niobate as an analogue of an actinide ceramic waste form. Mater Res Soc Symp Proc 1665:313–318Google Scholar
  12. Cao Q, Krivovichev SV, Burakov BE, Liu X (2015) Natural metamict minerals as analogues of aged radioactive waste forms. J Radioanal Nucl Chem 304:251–255CrossRefGoogle Scholar
  13. Cauchois Y (1932) Spectrographie des rayons par transmission d’un faisceau noncanalise a travers un cristalcourbe. J Phys Rad 3:320–324CrossRefGoogle Scholar
  14. Chalov PI (1975) Izotopnoe fraktsionirovanie prirodnogo urana (Isotope Fractionation of Natural Uranium). Ilim, Frunze, p 234Google Scholar
  15. Cherdyntsev VV (1969) Uran-234 (Uranium-234). Atomizdat, Moscow, p 274Google Scholar
  16. Deditius AP, Smith FN, Utsunomiya S, Ewing RC (2015) Role of vein-phases in nanoscale sequestration of U, Nb, Ti, and Pb during the alteration of pyrochlore. Geochim Cosmochim Acta 150:226–252CrossRefGoogle Scholar
  17. Doynikova O (2013) Mineralogiya urana vosstanovitelnoy zony gipergeneza (mineralogy of uranium in the reduction zone of hyper genesis). Fizmatlit, Moscow, pp 186–188Google Scholar
  18. Ercit TS (2005) Identification and alteration trends of granitic pegmatite-hosted (Y,REE,U,Th)–(Nb,Ta,Ti) oxide minerals: a statistical approach. Can Mineral 43:1291–1303CrossRefGoogle Scholar
  19. Ewing RC, Weber WJ, Lian J (2004) Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides. J Appl Phys 95(11):5949–5971CrossRefGoogle Scholar
  20. Fleischer M (1987) Glossary of mineral species. Mineralogical Record Inc, TucsonGoogle Scholar
  21. Glebovickiy VA et al (2005) Ranniy dokembriy baltiyskogo shchita (Early Precambrian of the Baltic Shield) (Ed. VA Glebovickiy.) Publishing house  “Nauka”, St. Petersburg, p 711 (in Russian) Google Scholar
  22. Gregory R, Lumpkin GR (1992) Analytical electron microscopy of columbite: a niobium- tantalum oxide mineral with zonal uranium distribution. J Nucl Mater 190:302–311CrossRefGoogle Scholar
  23. Hawthorne FC, Groat LA, Raudsepp M, Ball NA, Kimata M, Spike FD, Gaba R, Halden NM, Lumpkin GR, Ewing RC, Greegor RB, Lytle FW, Ercit TS, Rossman GR, Wicks FJ, Ramik RA, Sherriff BL, Fleet ME, McCammon C (1991) Alpha-decay damage in titanite. Am Miner 76:370–396Google Scholar
  24. Hosseinpour Khanmiri M, Bogdanov RV (2018) On the feasibility of determining the 230Th activity in minerals without the addition of a Th radiotracer. Appl Radiat Isot 133:57–60CrossRefGoogle Scholar
  25. Kalita AP (1961) Redkozemelnye pegmatity Alakurttii and Priladozhya (Rare-earth pegmatites of Alakurtti and Priladozhye). Publishing house of the Academy of Sciences of the USSR, Moscow, p 117 (in Russian) Google Scholar
  26. Latham AG, Schwarcz HP (1987a) On the possibility of determining of removal of uranium from crystalline igneous rocks using U-series disequilibria—1: a U-leach model and its applicability to whole-rock data. Appl Geochem 2(1):55–65CrossRefGoogle Scholar
  27. Latham AG, Schwarcz HP (1987b) On the possibility of determining rates of removal of uranium from crystalline igneous rocks using U-series disequilibria—2: applicability of a U-leach model to mineral separates. Appl Geochem 2(1):67–71CrossRefGoogle Scholar
  28. Lisitsin AK, Shulik LC (1985) Opredelenie stepeni okislennosti urana i kislotorastvorimogo zheleza v rude. In: Metodi izuchenia uranovykx mestorozhdeniyi v osadochnyx I metamorficheskiz tolshchakh//Determination of the oxidation level of uranium in acid-soluble iron. In the book: methods for the study of uranium deposits in sedimentary and metamorphic strata. M., Nedra, pp 230–238. (in Russian) Google Scholar
  29. Lumpkin GR, Ewing RC (1996) Geochemical alteration of pyrochlore group minerals: beafite subgroup. Am Miner 81:1237–1248CrossRefGoogle Scholar
  30. Marhol M (1982) Ion exchangers in analytical chemistry, their properties and use in inorganic chemistry. Elsevier Scientific, AmsterdamGoogle Scholar
  31. McMaster SA, Ram R, Charalambous F, Pownceby MI, Tardio J, Bhargava SK (2014) Synthesis and characterisation of the uranium pyrochlore betafite (Ca,U)2(Ti,Nb,Ta)2O7. J Hazard Mater 280:478–486CrossRefGoogle Scholar
  32. McMaster SA, Rama R, Pownceby MI, Tardio J, Bhargava SK (2015) Characterisation and leaching studies on the uranium mineral betafite [(U,Ca)2(Nb,Ti,Ta)2O7]. Miner Eng 81:58–70CrossRefGoogle Scholar
  33. Nettleton KCA, Nikoloski AN, Da Costa M (2015) The leaching of uranium from betafite. Hydrometallurgy 157:270–279CrossRefGoogle Scholar
  34. Parker W, Falk R (1962) Molecular plating: a method for the electrolytic formation of thin inorganic films. Nuclear Instruments Methods 16:355–357CrossRefGoogle Scholar
  35. Salje EKH, Safarik DJ, Taylor RD, Pasternak MP, Modic KA, Groat LA, Lashley JC (2011) Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5). J Phys Condens Matter 23(10):105402–105404CrossRefGoogle Scholar
  36. Satubaldiyev B, Lehto J, Suksi J, Tuovinen H, Uralbekov B, Burkitbayev M (2015) Understanding sulphuric acid leaching of uranium from ore by means of 234U/238U activity ratio as an indicator. Hydrometallurgy 155:125–131CrossRefGoogle Scholar
  37. Scott RD, MacKenzie AB, Alexander WR (1992) The interpretation of 238U-234U-230Th-226Ra disequilibria produced by rock-water interaction. J Geochem Explor 45:323–343CrossRefGoogle Scholar
  38. Soboleva  MV,  Pudovkina  IA (1957) Mineraly urana (Uranium Minerals), Handbook, (ed. V.I. Gerasimovskiy). Moscow, Publishing house "Gosgeoltekhizdat", p 410 (in Russian) Google Scholar
  39. Sumbaev OI (1969) The effect of the chemical shift of the X-ray K lines in heavy atoms. Phys Lett A 30:129–138CrossRefGoogle Scholar
  40. Vinokurov SE, Kulyako Yu M, Perevalov SA, Myasoedov BF (2007) Immobilization of actinides in pyrochlore-type matrices produced by self-propagating high-temperature synthesis. C R Chim 10(10–11):1128–1130CrossRefGoogle Scholar
  41. Weber M, Trautmann N, Menke H (1975) Herstellung dünner Präparate durch Molecularplating. Institut fuer Kernchemie der Universität Mainz, Mainz, pp 118–121 (Jahresbericht 1974) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Hosseinpour Khanmiri
    • 1
  • Svetlana Yu. Yanson
    • 1
  • Edward V. Fomin
    • 2
  • Anatoly V. Titov
    • 2
  • Andrey V. Grebeniuk
    • 1
  • Yury S. Polekhovsky
    • 1
  • Roman V. Bogdanov
    • 1
  1. 1.Saint-Petersburg State UniversitySaint-PetersburgRussia
  2. 2.Petersburg Nuclear Physics InstituteGatchinaRussia

Personalised recommendations