Advertisement

The effects of non-hydrostatic stress on the structure and properties of alpha-quartz

  • M. Murri
  • M. Alvaro
  • R. J. Angel
  • M. Prencipe
  • B. D. Mihailova
Original Paper
  • 69 Downloads

Abstract

The study of the effects of non-hydrostatic stresses on rock-forming minerals is fundamental for understanding how minerals respond to tectonic stresses in the Earth’s interior. Larger deviatoric stresses of the order of GPa can arise from physical interaction between minerals (e.g. host–inclusion systems, compositional gradients) at the micrometric scale, even if at the large-scale large stresses are annealed by plastic flows. Thus, experimental data under hydrostatic pressure do not provide us access to all the possible modifications and structural changes experienced by minerals subjected to deviatoric stresses. Therefore, we carried out ab initio hybrid Hartree–Fock/Density Functional Theory simulations to determine the properties of alpha-quartz, since it is one of the most abundant minerals in the Earth’s crust with a very simple chemistry and structure. We calculated its structure, elastic parameters and Raman-active vibrational modes as a function of different applied strains, which allow us to show how phonon frequencies and structural parameters (bond lengths and angles) are affected by deviatoric stress conditions rather than hydrostatic pressure.

Keywords

Quartz Deviatoric stress Grüneisen tensor Raman spectroscopy Ab initio HF/DFT 

Notes

Acknowledgements

This project received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program grant agreement 714936 and from the M.I.U.R.–F.A.R.E–IMPACT (n. R164WEJAHH) grant awarded to Matteo Alvaro. The manuscript has greatly benefited from the reviews of Mario Tribaudino and one anonymous reviewer.

Supplementary material

269_2018_1018_MOESM1_ESM.cif (112 kb)
Supplementary material 1 (CIF 111 KB)

References

  1. Anderson OL (1995) Equations of state of solids for geophysics and ceramic science. Oxford University Press, OxfordGoogle Scholar
  2. Angel RJ, Gonzalez-Platas J, Alvaro M (2014a) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kri 229:405–419Google Scholar
  3. Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F (2014b) Geobarometry from host-inclusion systems: the role of elastic relaxation. Am Mineral 99:2146–2149CrossRefGoogle Scholar
  4. Angel RJ, Murri M, Mihailova B, Alvaro M (2018) Stress, strain and Raman shifts. Z Kri.  https://doi.org/10.1515/zkri-2018-2112 Google Scholar
  5. Anzolini CPM, Alvaro M, Romano C, Vona A, Lorenzon S, Smith EM, Brenker FE, Nestola F (2018) Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions. Am Mineral 103:69–74CrossRefGoogle Scholar
  6. Barron THK, Collins JG, White GK (1980) Thermal expansion of solids at low temperatures. Adv Phys 29:609–730CrossRefGoogle Scholar
  7. Bismayer U, Salje EKH, Joffrin C (1982) Reinvestigation of the stepwise character of the ferroelastic transition in lead phosphate-arsenate, Pb3(PO4)2–Pb3(AsO4)2. J Phys 43:1379–1388CrossRefGoogle Scholar
  8. Briggs RJ, Ramdas AK (1977) Piezospectroscopy of the Raman spectrum of α-quartz. Phys Rev B 16:3815–3826CrossRefGoogle Scholar
  9. Busing WL, Levy HA (1964) The effect of thermal motion on the estimation of bond lengths from diffraction measurements. Acta Crystallogr 17:142–146CrossRefGoogle Scholar
  10. Campomenosi N, Mazzucchelli ML, Mihailova BD, Scambelluri M, Angel RJ, Nestola F, Reali A, Alvaro M (2018) How geometry and anisotropy affect residual strain in host inclusion system: coupling experimental and numerical approaches. Am Mineral 103(12):2032–2035CrossRefGoogle Scholar
  11. Cantrell JH (1980) Generalized Grüneisen tensor from solid nonlinearity parameters. Ph Rev B 21:4191–4195CrossRefGoogle Scholar
  12. Carpenter MA, Salje EKH, Graeme-Barber A, Wruck B, Dove MT, Knight KS (1998) Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha-beta phase transition in quartz. Am Mineral 83:2–22CrossRefGoogle Scholar
  13. Cionoiu STL, Moulas E, Stünitz H (2018) Phase transitions under differential stress: deviatoric stresses or pressure? Geophys Res Abstr 20:18504Google Scholar
  14. Civalleri B, D’Arco P, Orlando R, Saunders V, Dovesi R (2001) Hartree–Fock geometry optimisation of periodic systems with the CRYSTAL code. Chem Phys Lett 348:131–138CrossRefGoogle Scholar
  15. Clément M, Padrón-Navarta JA, Tommasi A, Mainprice D (2018) Non-hydrostatic stress field orientation inferred from orthopyroxene (Pbca) to low-clinoenstatite (P21/c) inversion in partially dehydrated serpentinites. Am Mineral 103:993–1001CrossRefGoogle Scholar
  16. Coe RS, Kirby SH (1975) The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib Mineral Petrol 52(1):29–55CrossRefGoogle Scholar
  17. Demuth T, Jeanvoine Y, Hafner J, Angyan J (1999) Polymorphism in silica studied in the local density and generalized-gradient approximations. J Phys Condens Mater 11:3833–3874CrossRefGoogle Scholar
  18. Dove MT, Gamghir M, Heine V (1999) Anatomy of a structural phase transition: theoretical analysis of the displacive phase transition in quartz and other silicates. Phys Chem Miner 26:344–353CrossRefGoogle Scholar
  19. Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D’Arco P, Noël Y, Causà M, Rérat M, Kirtman B (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quant Chem 114:1287–1317CrossRefGoogle Scholar
  20. Downs RT, Gibbs G, Bartelmehs KL, Boisen MB (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757Google Scholar
  21. Fischer M, Angel RJ (2017) Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations. J Chem Phys 146:174111CrossRefGoogle Scholar
  22. Gallivan SM, Gupta YM (1995) Study of tensile deformation in shocked Z-cut, α – quartz using time resolved Raman spectroscopy. J Appl Phys 78:1557–1564CrossRefGoogle Scholar
  23. Gibbs JW (1875) On the equilibrium of heterogeneous substances. First part. Trans Connect Acad Art Sci 3:108–248Google Scholar
  24. Glinnemann J, King HE, Schulz H, Hahn T, La Placa SJ, Dacol F (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure. Z Kri 198:177–212CrossRefGoogle Scholar
  25. Grüneisen E (1926) Zustand des festen Körpers. Handbuch der PhysikGoogle Scholar
  26. Hazen RM, Finger LW, Hemley R, Mao H (1989) High-pressure crystal chemistry and amorphisation of alpha-quartz. Solid State Commun 72:507–511CrossRefGoogle Scholar
  27. Hirth G, Tullis J (1994) The brittle-plastic transition in experimentally deformed quartz aggregates. J Geophys Res Solid Earth 99:11731–11747CrossRefGoogle Scholar
  28. Hobbs BE, Ord A (2016) Does non-hydrostatic stress influence the equilibrium of metamorphic reactions? Earth Sci Rev 163:190–233CrossRefGoogle Scholar
  29. Key SW (1967) Grüneisen tensor for anisotropic materials. J Appl Phys 38:2923–2928CrossRefGoogle Scholar
  30. Kihara K (1990) A X-ray study of the temperature dependence of the quartz structure. Eur J Mineral 2:63–77CrossRefGoogle Scholar
  31. Kihara K (2001) Molecular dynamics interpretation of structural changes in quartz. Phys Chem Miner 28:365–376CrossRefGoogle Scholar
  32. Kimizuka H, Kaburaki H, Kogure Y (2003) Molecular-dynamics study of the high-temperature elasticity of quartz above theα–β phase transition. Phys Rev B 67:024105CrossRefGoogle Scholar
  33. Kim-Zajonz J, Werner S, Schulz H (1999) High pressure single crystal X-ray diffraction study on ruby up to 31 GPa. Z Kristallogr 214:331–336Google Scholar
  34. Kirby SH, Stern LA (1993) Experimental dynamic metamorphism of mineral single crystals. J Struct Geol 15:1223–1240CrossRefGoogle Scholar
  35. Korsakov AV, Perraki M, Zhukov VP, De Gussem K, Vandenabeele P, Tomilenko AA (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. Eur J Mineral 21:1313–1323CrossRefGoogle Scholar
  36. Kuzmany H (2009) Solid-state spectroscopy: an introduction. Springer, New YorkCrossRefGoogle Scholar
  37. Lakshtanov DL, Sinogeilin SV, Bass JD (2007) High-temperature phase transitions and elasticity of silica polymorphs. Phys Chem Miner 34:11–22CrossRefGoogle Scholar
  38. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  39. Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65:920–930Google Scholar
  40. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 12:5188–5193CrossRefGoogle Scholar
  41. Murri M, Mazzucchelli ML, Campomenosi N, Korsakov AV, Prencipe M, Mihailova B, Scambelluri M, Angel RJ, Alvaro M (2018) Raman elastic geobarometry for anisotropic mineral inclusions. Am Mineral 103:1869–1872Google Scholar
  42. Nestola FPM, Nimis P, Sgreva N, Perritt SH, Chinn IL, Zaffiro G (2018) Toward a robust elastic geobarometry of kyanite inclusions in eclogitic diamonds. J Geophys Res Solid Earth 123:6411–6423Google Scholar
  43. Pascale F, Zicovich-Wilson CM, Lopez Gejo F, Civalleri B, Orlando R, Dovesi R (2004) The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. J Comput Chem 25:888–897CrossRefGoogle Scholar
  44. Pascale F, Zicovich-Wilson CM, Orlando R, Roetti C, Ugliengo P, Dovesi R (2005) Vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code. J Phys Chem B 109:6146–6152CrossRefGoogle Scholar
  45. Prencipe M (2012) Simulation of vibrational spectra of crystals by ab initio calculations: an invaluable aid in the assignment and interpretation of the Raman signals. The case of jadeite (NaAlSi2O6). J Raman Spectrosc 43:1567–1569CrossRefGoogle Scholar
  46. Prencipe M (2018) Quantum mechanics in earth sciences: a one-century-old story. Rend Fis Acc Lincei.  https://doi.org/10.1007/s12210-018-0744-1 Google Scholar
  47. Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239CrossRefGoogle Scholar
  48. Richter B, Stunitz H, Heilbronner R (2016) Stresses and pressures at the quartz-to-coesite phase transformation in shear deformation experiments. J Geophys Res Solid Earth 121:8015–8033CrossRefGoogle Scholar
  49. Robinson K, Gibbs G, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  50. Rosenfeld JL, Chase AB (1961) Pressure and temperature of crystallization from elastic effects around solid inclusion minerals? Am J Sci 259:519–541CrossRefGoogle Scholar
  51. Scheidl KS, Schaeffer A-K, Petrishcheva E, Habler G, Fischer FD, Schreuer J, Abart R (2014) Chemically induced fracturing in alkali feldspar. Phys Chem Miner 41:1–16CrossRefGoogle Scholar
  52. Scheidl KS, Kurnosov A, Trots DM, Boffa Ballaran T, Angel RJ, Miletich R (2016) Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa. J Appl Crystallogr 49:2129–2137CrossRefGoogle Scholar
  53. Schmidt C, Ziemann MA (2000) In-situ Raman spectroscopy of quartz: a pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am Mineral 85:1725–1734CrossRefGoogle Scholar
  54. Scott JF, Porto SPS (1967) Longitudinal and transverse optical lattice vibrations in quartz. Phys Rev 161:903–910CrossRefGoogle Scholar
  55. Shapiro SM, O’Shea DC, Cummins HZ (1967) Raman scattering study of the alpha-beta phase transition in quartz. Phys Rev Lett 19:361–364CrossRefGoogle Scholar
  56. Stangarone C, Tribaudino M, Prencipe M, Lottici PP (2016) Raman modes in Pbca enstatite (Mg2Si2O6): an assignment by quantum mechanical calculation to interpret experimental results. J Raman Spectrosc 47:1247–1258CrossRefGoogle Scholar
  57. Stangarone C, Böttger U, Bersani D, Tribaudino M, Prencipe M (2017) Ab initio simulations and experimental Raman spectra of Mg2SiO4 forsterite to simulate Mars surface environmental conditions. J Raman Spectrosc 48:1528–1535CrossRefGoogle Scholar
  58. Tarumi R, Nakamura K, Ogi H, Hirao M (2007) Complete set of elastic and piezoelectric coefficients of α-quartz at low temperatures. J Appl Phys 102Google Scholar
  59. Tucker MG, Keen DA, Dove MT (2001) A detailed structural characterization of quartz on heating through the α–β phase transition. Mineral Magn 65:489–507CrossRefGoogle Scholar
  60. Valenzano L, Torres FJ, Doll K, Pascale F, Zicovich-Wilson CM, Dovesi R (2006) Ab initio study of the vibrational spectrum and related properties of crystalline compounds; the case of CaCO3 calcite. Z Phys Chem 220:893–912CrossRefGoogle Scholar
  61. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, LeipzigGoogle Scholar
  62. Wheeler J (2014) Dramatic effects of stress on metamorphic reactions. Geology 42:647–650CrossRefGoogle Scholar
  63. Wheeler J (2018) The effects of stress on reactions in the Earth: sometimes rather mean, usually normal, always important. J Metamorph Geol 36:439–461CrossRefGoogle Scholar
  64. Wu Z, Cohen RE (2006) More accurate generalized gradient approximation for solids. Phys Rev B 73Google Scholar
  65. Zhang Y (1998) Mechanical and phase equilibria in inclusion–host systems. Earth Planet Sci Lett 157:209–222CrossRefGoogle Scholar
  66. Ziman JM (1960) Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Murri
    • 1
  • M. Alvaro
    • 1
  • R. J. Angel
    • 1
  • M. Prencipe
    • 2
  • B. D. Mihailova
    • 3
  1. 1.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  2. 2.Earth Sciences DepartmentUniversity of TorinoTurinItaly
  3. 3.Department of Earth SciencesUniversity of HamburgHamburgGermany

Personalised recommendations