Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 2, pp 139–172 | Cite as

The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments

  • K. Marquardt
  • U. H. Faul
Review Article

Abstract

Interfaces in rocks, especially grain boundaries in olivine dominated rocks, have been subject to about 40 years of studies. The grain boundary structure to property relation is fundamental to understand the diverging properties of polycrystalline samples compared to those of single crystals. The number of direct structural observations is small, i.e. in range of 100 micrographs, and the number of measurements of properties directly linked to structural observations is even smaller. Bulk aggregate properties, such as seismic attenuation, rheology and electrical conductivity, are sensitive to grain size, and seem to show influences by grain boundary character distributions. In this context we review previous studies on grain boundary structure and composition and plausible relations to bulk properties. The grain boundary geometry is described using five independent parameters; generally, their structural width ranges between 0.4–1.2 nm and the commonly used 1 nm seems a good approximation. This region of enhanced disorder is often enriched in elements that are incompatible in the perfect crystal lattice. The chemical composition of grain boundaries depends on the bulk rock composition. We determined the 5 parameter grain boundary character distribution (GBCD) for polycrystaline Fo\(_{90}\) and studied structure and chemistry at the nm-scale to extend previous measurements. We find that grain boundary planes close to perpendicular to the crystallographic c-direction dominate the grain boundary network. We conclude that linking grain boundary structure in its full geometric parameter space to variations of bulk rock properties is now possible by GBCD determination using EBSD mapping and statistical analyses.

Keywords

Olivine Grain Boundaries Upper mantle Deformation Seismic attenuation Electrical conductivity Forsterite Interfaces Segregation Incompatible elements 

Notes

Acknowledgements

We gratefully acknowledge discussions with our colleagues John Fitz Gerald, Ian Jackson and Chris Cline as well as Hauke Marquardt and Nobuyoshi Miyajima. We are also grateful for the technical support at ANU (Harri Kokkonen, Hayden Miller) and BGI (Hubert Schulz, Raphael Njul). U.F. acknowledges support from NSF grant EAR-1321889 and EAR-1464024. KM acknowledges support from the German Science Foundation (MA6287/3, MA6287/6). We also acknowledge the Earthquake Research Institute’s cooperative research program, and thank Sanae Koizumi for the sample synthesis at ERI in Tokyo. The FEI Scios FIB machine at BGI Bayreuth is supported through grant INST 91/315-1 FUGG. We are grateful to Sylvie Demouchy and one anonymous reviewer for their meticulous and thorough reviews. Any surviving errors of omission or commission are entirely ours.

Supplementary material

References

  1. Adams BL, Ta’asan S, Kinderlehrer D, Livshits I, Mason DE, Wu C-T, Mullins WW, Rohrer GS, Rollett AD, Saylor DM (1999) Extracting grain boundary and surface energy from measurement of triple junction geometry. Interface Sci 7:321–338Google Scholar
  2. Adams BL, Wright SI, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metall Trans A 24(4):819–831CrossRefGoogle Scholar
  3. Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys Chem Miner 39(9):749–760.  https://doi.org/10.1007/s00269-012-0529-5 CrossRefGoogle Scholar
  4. Alsayed AM, Islam JF, Zhang J, Collings PJ, Yodh A (2005) Premelting at defects within bulk colloidal crystals. Science 309(August):1207–1210CrossRefGoogle Scholar
  5. Anderson DL, Sammis C (1970) Partial melting in the upper mantle. Phys Earth Planet Inter 3:41–50CrossRefGoogle Scholar
  6. Armstrong J (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200Google Scholar
  7. Ashby M (1972) Boundary defects, and atomistic aspects of boundary sliding and diffusional creep. Surf Sci 31:498–542CrossRefGoogle Scholar
  8. Ashby MF, Raj R, Gifkins RC (1970) Diffusion-controlled sliding at a serraed grain boundary. Scripta Metall 4:737–742CrossRefGoogle Scholar
  9. Avramov I (2009) Relationship between diffusion, self-diffusion and viscosity. J Non-Cryst Solids 355(10–12):745–747CrossRefGoogle Scholar
  10. Bagdassarov N, Laporte D, Thompson AB (2000) Physics and chemistry of partially molten rocks. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  11. Bean JJ, McKenna KP (2016) Origin of differences in the excess volume of copper and nickel grain boundaries. Acta Mater 110:246–257CrossRefGoogle Scholar
  12. Beeman ML, Kohlstedt DL (1993) Deformation of fine-grained aggregates of olivine plus melt at high temperatures and pressures. J Geophys Res 98(B4):6443–6452CrossRefGoogle Scholar
  13. Bhogireddy VSPK, Hüter C, Neugebauer J, Steinbach I, Karma A, Spatschek R (2014) Phase-field modeling of grain-boundary premelting using obstacle potentials. Phys Rev E—Statist Nonlinear Soft Matter Phys 90(1):1–10.  https://doi.org/10.1016/j.commatsci.2015.02.040 CrossRefGoogle Scholar
  14. Bindi L, Yao N, Lin C, Hollister LS, Andronicos CL, Distler VV, Eddy MP, Kostin A, Kryachko V, MacPherson GJ, Steinhardt WM, Yudovskaya M, Steinhardt PJ (2015) Natural quasicrystal with decagonal symmetry. Sci Rep 5:9111CrossRefGoogle Scholar
  15. Bojarski SA (2014) The effects of grain boundary character and energy on complexion transitions in ceramics. Thesis, Carnegie Mellon University, PittsburghGoogle Scholar
  16. Boneh Y, Wallis D, Hansen LN, Krawczynski MJ, Skemer P (2017) Oriented grain growth and modification of frozen anisotropy’ in the lithospheric mantle. Earth Planet Sci Lett 474:368–374CrossRefGoogle Scholar
  17. Brown GE (1980) Orthosilicates. In: Ribbe PH (ed) Reviews in mineralogy, vol 5, chapter 11. Olivine, pp 275–365Google Scholar
  18. Bruno M, Massaro FR, Prencipe M, Demichelis R, De La Pierre M, Nestola F (2014) Ab initio calculations of the main crystal surfaces of Forsterite (Mg2SiO4): a preliminary study to understand the nature of geochemical processes at the olivine interface. J Phys Chem C 118:2498–2506.  https://doi.org/10.1021/jp409837d CrossRefGoogle Scholar
  19. Bruno M, Rubbo M, Aquilano D, Massaro FR, Nestola F (2016) Diamond and its olivine inclusions: a strange relation revealed by ab initio simulations. Earth Planet Sci Lett 435:31–35.  https://doi.org/10.1016/j.epsl.2015.12.011 CrossRefGoogle Scholar
  20. Bulau JR, Waff HS, Tyburczy JA (1979) Mechanical and thermodynamical constraints on fluid distribution in partial melts. J Geophys Res 84:6102–6108.  https://doi.org/10.1029/JB084iB11p06109 CrossRefGoogle Scholar
  21. Burke J, Turnbull D (1952) Recrystallization and grain growth. Prog Metal Phys 3:220–292.  https://doi.org/10.1016/0502-8205(52)90009-9 CrossRefGoogle Scholar
  22. Burnard PG, Demouchy S, Delon R, Arnaud NO, Marrocchi Y, Cordier P, Addad A (2015) The role of grain boundaries in the storage and transport of noble gases in the mantle. Earth Planet Sci Lett 430:260–270.  https://doi.org/10.1016/j.epsl.2015.08.024 CrossRefGoogle Scholar
  23. Cabane H, Laporte D, Provost A (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contrib Mineral Petrol 150(1):37–53.  https://doi.org/10.1007/s00410-005-0002-2 CrossRefGoogle Scholar
  24. Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54(19):4953–4975CrossRefGoogle Scholar
  25. Casey WH, Westrich HR, Banfield JF, Ferruzzi G, Arnold GW (1993) Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366(6452):253–256CrossRefGoogle Scholar
  26. Chaim R (1997) Percolative composite model for prediction of the properties of nanocrystalline materials. J Mater Res 12(07):1828–1836CrossRefGoogle Scholar
  27. Chakraborty S (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980°–1300°C. J Geophys Res Solid Earth 102(B6):12317–12331.  https://doi.org/10.1029/97JB00208 CrossRefGoogle Scholar
  28. Chakraborty S, Farver JR, Yund RA, Rubie DC, Miherais I, Chakrahorty S (1994) Mg tracer diffusion in synthetic forsterite and San Carlos Olivine as a function of P, T and fO2. Phys Chem Miner 21(8):489–500.  https://doi.org/10.1007/BF00203923 CrossRefGoogle Scholar
  29. Chan SW, Balluffi RW (1986) Study of energy vs misorientation for grain boundaries in gold by crystallite rotation method-II. Tilt boundaries and mixed boundaries. Acta Metall 34(11):2191–2199.  https://doi.org/10.1016/0001-6160(86)90164-1 CrossRefGoogle Scholar
  30. Ching WY, Xu Y-N (1999) Nonscalability and nontransferability in the electronic properties of the Y-Al-O system. Phys Rev B 59(20):12815CrossRefGoogle Scholar
  31. Cho J, Wang CM, Chan HM, Rickman JM, Harmer MP (1999) Role of segregating dopants on the improved creep resistance of aluminum oxide. Acta Mater 47(15–16):4197–4207CrossRefGoogle Scholar
  32. Cinibulk MK, Kleebe H-J, Ruhle M (1993) Quantitative comparison of TEM techniques for determining amorphous intergranular film thickness. J Am Ceram Soc 76(2):426–432CrossRefGoogle Scholar
  33. Clarke DR (1979a) High-resolution techniques and application to nonoxide ceramics. J Am Ceram Soc 62(5–6):236–246.  https://doi.org/10.1111/j.1151-2916.1979.tb09477.x CrossRefGoogle Scholar
  34. Clarke DR (1979b) On the detection of thin intergranular films by electron microscopy. Ultramicroscopy 4(1):33–44CrossRefGoogle Scholar
  35. Clarke DR (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. J Am Ceram Soc 70(1):15–22.  https://doi.org/10.1111/j.1151-2916.1987.tb04846.x CrossRefGoogle Scholar
  36. Cmíral M, Fitz Gerald JD, Faul UH, Green DH (1998) A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contrib Miner Petrol 130(3–4):336–345Google Scholar
  37. Cooper R, Kohlstedt D (1982) Interfacial energies in the olivine basalt system. In: Akimoto S, Manghnani M (eds) High-pressure research in geophysics. Reidel with Center for Academic Publications Japan; AEPS 12, pp 217–228Google Scholar
  38. Cooper RF, Kohlstedt DL (1984) Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing. Tectonophysics 107(3–4):207–233.  https://doi.org/10.1016/0040-1951(84)90252-X CrossRefGoogle Scholar
  39. Cordier P, Demouchy S, Beausir B, Taupin V, Barou F, Fressengeas C (2014) Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507:51–56CrossRefGoogle Scholar
  40. Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für physikalische Chemie 92:219–221Google Scholar
  41. Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113(B12):B12211CrossRefGoogle Scholar
  42. Dash JG (1999) RMP colloquia history of the search for continuous melting. Rev Modern Phys 71(5):1737–1743CrossRefGoogle Scholar
  43. Davies GR, Stolz AJ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. J Petrol 47(6):1119–1146CrossRefGoogle Scholar
  44. De Hoog JC, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270(1–4):196–215CrossRefGoogle Scholar
  45. de Kloe R (2001) Deformation mechanisms and melt nano-structures in experimentally deformed olivine-orthopyroxene rocks with low melt fractions. Thesis 201:176Google Scholar
  46. De Kloe R, Drury MR, van Roermund HLM (2000) Evidence for stable grain boundary melt films in experimentally deformed olivine-orthopyroxene rocks. Phys Chem Miner 27:480–494CrossRefGoogle Scholar
  47. de Leeuw NH, Catlow CR, King HE, Putnis A, Muralidharan K, Deymier P, Stimpfl M, Drake MJ (2010) Where on Earth has our water come from? Chem Commun (Cambridge, England) 46(47):8923–8925CrossRefGoogle Scholar
  48. de Leeuw NH, Parker SC, Catlow CR, Price GD (2000a) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27(5):332–341CrossRefGoogle Scholar
  49. de Leeuw NH, Parker SC, Catlow CRA, Price GD (2000b) Proton-containing defects at forsterite 010 tilt grain boundaries and stepped surfaces. Am Miner 85(9):1143–1154CrossRefGoogle Scholar
  50. Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295(1–2):305–313CrossRefGoogle Scholar
  51. Dillon SJ, Harmer MP (2007) Multiple grain boundary transitions in ceramics: a case study of alumina. Acta Mater 55(15):5247–5254CrossRefGoogle Scholar
  52. Dillon SJ, Harmer MP, Rohrer GS (2010) The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J Am Ceram Soc 1802:1796–1802Google Scholar
  53. Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. Rev Miner Geochem 72(1):921–970CrossRefGoogle Scholar
  54. Doukhan N, Doukhan JC, Ingrin J, Jaoul O, Raterron P (1993) Early partial melting in pyroxenes. Am Miner 78(11–12):1246–1256Google Scholar
  55. Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30N). Chem Geol 264(1–4):71–88CrossRefGoogle Scholar
  56. Drury MR (2005) Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere. Geol Soc London Spec Publ 243(2):143–158CrossRefGoogle Scholar
  57. Drury MR, Fitz Gerald JD (1996) Grain boundary melt films in an experimentally deformed olivine-orthopyroxene rock: Implications for melt distribution in upper mantle rocks. Geophys Res Lett 23(7):701–704CrossRefGoogle Scholar
  58. Drury MR, Urai JL (1990) Deformation-related recrystallization processes. Tectonophysics 172:235–253Google Scholar
  59. Durham WB, Goetze C (1977) Plastic flow of oriented single crystals of olivine: 1. Mechanical data. J Geophys Res 82(36):5737–5753CrossRefGoogle Scholar
  60. Durham WB, Goetze C, Blake B (1977) Plastic flow of oriented single crystals of olivine: 2. Observations and interpretations of the dislocation structures. J Geophys Res 82(36):5755–5770CrossRefGoogle Scholar
  61. Duyster J, Stöckhert B (2001) Grain boundary energies in olivine derived from natural microstructures. Contrib Miner Petrol 140(5):567–576CrossRefGoogle Scholar
  62. Edgar AD (1973) Experimental petrology. Clarendon Press, OxfordGoogle Scholar
  63. Eggins S, Rudnick R, McDonough W (1998) The composition of peridotites and their minerals: a laser-ablation ICPMS study. Earth Planet Sci Lett 154(1–4):53–71CrossRefGoogle Scholar
  64. Fang X, Yin W, Qin C, Wang W, Lo K, Shek C (2016) The interface character distribution of cold-rolled and annealed duplex stainless steel. Mater Charact 118:397–404CrossRefGoogle Scholar
  65. Farla RJM, Peach CJ, ten Grotenhuis SM (2010) Electrical conductivity of synthetic iron-bearing olivine. Phys Chem Miner 37(3):167–178CrossRefGoogle Scholar
  66. Farver JR, Yund A (2000) Silicon diffusion in forsterite aggregates: Implications for diffusion accommodated creep. Geophys Res Lett 27(15):2337–2340CrossRefGoogle Scholar
  67. Farver JR, Yund RA, Rubie DC (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa. J Geophys Res Solid Earth 99(B10):19809–19819.  https://doi.org/10.1029/94JB01250 CrossRefGoogle Scholar
  68. Faul UH (2000) Chapter 3 constraints on the melt distribution in anisotropic polycrystalline aggregates undergoing grain growth. In: Bagdassarov N, Laporte D, Thompson A (eds) Physics and chemistry of partially molten rocks, vol 3. Kluwer Academic Publishers, Dordrecht, pp 67–92CrossRefGoogle Scholar
  69. Faul UH, Fitz Gerald JD (1999) Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study. Phys Chem Miner 26(3):187–197CrossRefGoogle Scholar
  70. Faul U, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134.  https://doi.org/10.1016/j.epsl.2005.02.008
  71. Faul UH, Jackson I (2007) Diffusion creep of dry, melt-free olivine. J Geophys Res 112(B4):B04204CrossRefGoogle Scholar
  72. Faul UH, Jackson I (2015) Transient creep and strain energy dissipation: an experimental perspective. Annu Rev Earth Planet Sci 43(1):541–569.  https://doi.org/10.1146/annurev-earth-060313-054732 CrossRefGoogle Scholar
  73. Faul UH, Scott D (2006) Grain growth in partially molten olivine aggregates. Contrib Miner Petrol 151(1):101–111CrossRefGoogle Scholar
  74. Faul UH, Toomey DR, Waff HS (1994) Intergranular balsaltic melt is dristibuted in thin, eleogated inclusions. Geophys Res Lett 21(1):29–32CrossRefGoogle Scholar
  75. Faul UH, Fitz Gerald JD, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109(B6):B06202CrossRefGoogle Scholar
  76. Faul UH, Cline CJ, David EC, Berry AJ, Jackson I (2016) Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet Sci Lett 452:227–237CrossRefGoogle Scholar
  77. Fei H, Koizumi S, Sakamoto N, Hashiguchi M, Yurimoto H, Marquardt K, Miyajima N, Yamazaki D, Katsura T (2016) New constraints on upper mantle creep mechanism inferred from silicon grain-boundary diffusion rates. Earth Planet Sci Lett 433(433):350–359CrossRefGoogle Scholar
  78. Fliervoet TF, Drury MR, Chopra PN (1999) Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics 303(1–4):1–27CrossRefGoogle Scholar
  79. Foley SF, Jacob DE, O’Neill HSC (2011) Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib Miner Petrol 162(1):1–20CrossRefGoogle Scholar
  80. Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191CrossRefGoogle Scholar
  81. Fultz BJH (2001) Transmission electron microscopy and diffractometry of materials. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  82. Garapic G, Faul UH, Brisson E (2013) High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem Geophys Geosyst 14:1–11CrossRefGoogle Scholar
  83. Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgOSiO2 system. Contrib Miner Petrol 164(1):1–16.  https://doi.org/10.1007/s00410-012-0721-0 CrossRefGoogle Scholar
  84. Garrido CJ, Bodinier J-L, Alard O (2000) Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite. Earth Planet Sci Lett 181(3):341–358CrossRefGoogle Scholar
  85. Ghanbarzadeh S, Prodanović M, Hesse M (2014) Percolation and grain boundary wetting in anisotropic texturally equilibrated pore networks. Phys Rev Lett 113(4):048001CrossRefGoogle Scholar
  86. Ghosh DB, Karki BB (2014) First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite. Phys Chem Miner 41:163–171.  https://doi.org/10.1007/s00269-013-0633-1 CrossRefGoogle Scholar
  87. Goetze C, Kohlstedt DL (1973) Laboratory study of dislocation climb and diffusion in olivine. J Geophys Res 78(26):5961–5971.  https://doi.org/10.1029/JB078i026p05961 CrossRefGoogle Scholar
  88. Gribb TT, Cooper RF (1998) Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. J Geophys Res Solid Earth 103(B11):27267–27279CrossRefGoogle Scholar
  89. Gurmani SF, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: Molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116(B12):B12209CrossRefGoogle Scholar
  90. Han L-B, An Q, Fu R-S, Zheng L, Luo S-N (2010) Local and bulk melting of Cu at grain boundaries. Phys Rev B 405:748–753Google Scholar
  91. Hansen LN, Zimmerman ME, Kohlstedt DL (2011) Grain boundary sliding in San Carlos olivine: Flow law parameters and crystallographic-preferred orientation. J Geophys Res 116(B8):B08201CrossRefGoogle Scholar
  92. Hansen L, Zimmerman M, Dillman A, Kohlstedt D (2012a) Strain localization in olivine aggregates at high temperature: A laboratory comparison of constant-strain-rate and constant-stress boundary conditions. Earth Planet Sci Lett 333–334:134–145CrossRefGoogle Scholar
  93. Hansen L, Zimmerman M, Kohlstedt D (2012b) Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature 492(7429):415–418CrossRefGoogle Scholar
  94. Hansen LN, Zimmerman ME, Kohlstedt DL (2012c) The influence of microstructure on deformation of olivine in the grain-boundary sliding regime. J Geophys Res Solid Earth 117(B9).  https://doi.org/10.1029/2012JB009305
  95. Harmer MP (2010) Interfacial kinetic engineering: how far have we come since Kingery’s inaugural sosman address? J Am Ceram Soc 93(2):301–317CrossRefGoogle Scholar
  96. Hartmann K, Wirth R, Heinrich W (2010) Synthetic near \(\Sigma\)5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37(5):291–300.  https://doi.org/10.1007/s00269-009-0333-z CrossRefGoogle Scholar
  97. Hartmann K, Wirth R, Markl G (2008) P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten Norway. Contrib Mineral Petrol 156(3):359–375.  https://doi.org/10.1007/s00410-008-0290-4 CrossRefGoogle Scholar
  98. Hashim L (2016) Unraveling the grain size evolution in the Earth ’ s mantle Experimental observations and theoretical modeling. PhD thesisGoogle Scholar
  99. Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in Earth’s mantle: a possible carbon flux from the core. Proc Nat Acad Sci USA 105(25):8537–41CrossRefGoogle Scholar
  100. Heilbronner R, Tullis J (2006) Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. J Geophys Res Solid Earth 111:1–19CrossRefGoogle Scholar
  101. Heinemann S, Wirth R, Dresen G (2001) Synthesis of feldspar bicrystals by direct bonding. Phys Chem Miner 28(10):685–692CrossRefGoogle Scholar
  102. Heinemann S, Wirth R, Dresen G, Paper O (2003) TEM study of a special grain boundary in a synthetic K-feldspar bicrystal: Manebach twin. Phys Chem Miner 30(3):125–130CrossRefGoogle Scholar
  103. Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5. Phys Chem Miner 32(4):229–240CrossRefGoogle Scholar
  104. Hiraga T, Anderson I, Zimmerman M, Mei S, Kohlstedt D (2002) Structure and chemistry of grain boundaries in deformed, olivine + basalt and partially molten lherzolite aggregates: evidence of melt-free grain boundaries. Contrib Miner Petrol 144:163–175CrossRefGoogle Scholar
  105. Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the Earth’s mantle. Nature 427(6976):699–703CrossRefGoogle Scholar
  106. Hiraga T, Anderson IM, Kohlstedt DL, Iraga TAH, Nderson IANMA, Ohlstedt DALK (2003) Chemistry of grain boundaries in mantle rocks. Am Miner 88(6976):1015–1019CrossRefGoogle Scholar
  107. Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system II: Applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71(5):1281–1289CrossRefGoogle Scholar
  108. Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71(5):1266–1280CrossRefGoogle Scholar
  109. Hiraga T, Tachibana C, Ohashi N, Sano S (2010) Grain growth systematics for forsterite enstatite aggregates: effect of lithology on grain size in the upper mantle. Earth Planet Sci Lett 291(1–4):10–20CrossRefGoogle Scholar
  110. Hirth G, Kohlstedt D (2003) Rheology of the Upper mantle and the mantle Wedge: a view from the experimentalists. In: Inside the Subduction Factory, p 311Google Scholar
  111. Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime. J Geophys Res 100(B2):1981–2001CrossRefGoogle Scholar
  112. Holm EA, Rohrer GS, Foiles SM, Rollett AD, Miller HM, Olmsted DL (2011) Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater 59(13):5250–5256CrossRefGoogle Scholar
  113. Holtzman BK, Kendall J-M (2010) Organized melt, seismic anisotropy, and plate boundary lubrication. Geochem Geophys Geosyst 11.  https://doi.org/10.1029/2010GC003296
  114. Homer ER, Patala S, Priedeman JL (2015) Grain boundary plane orientation fundamental zones and structure-property relationships. Sci Rep 5:15476CrossRefGoogle Scholar
  115. Jackson I, Faul UH (2010) Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys Earth Planet Inter 183:151–163.  https://doi.org/10.1016/j.pepi.2010.09.005
  116. Jackson I, Faul UH, Fitz Gerald JD, Tan BH (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. J Geophys Res 109(B6):B06201CrossRefGoogle Scholar
  117. Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res Solid Earth 107(B12):ECV 5–1–ECV 5–16CrossRefGoogle Scholar
  118. Johnson CL, Hÿtch MJ, Buseck PR, Hy MJ (2004) Nanoscale waviness of low-angle grain boundaries. Proc Nat Acad Sci USA 101(52):17936–17939CrossRefGoogle Scholar
  119. Jurewicz SR, Jurewicz AJG (1986) Distribution of apparent angles on random sections with emphasis on dihedral angle measurements. J Geophys Res 91(B9):9277CrossRefGoogle Scholar
  120. Kahneman D, Tversky A (1981) On the study of statistical intuitions. ONR Tech RepGoogle Scholar
  121. Kaplan WD, Chatain D, Wynblatt P, Carter WC (2013) A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci 48(17):5681–5717CrossRefGoogle Scholar
  122. Karato S (1989) Grain growth kinetics in olivine aggregates. Tectonophysics 168(4):255–273CrossRefGoogle Scholar
  123. Karato S-I, Paterson MS, FitzGerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res 91(B8):8151CrossRefGoogle Scholar
  124. Karato S-I, Toriumi M, Fujii T (1980) Dynamic recrystallization of olivine single crystals during high-temperature creep. Geophys Res Lett 7(9):649–652CrossRefGoogle Scholar
  125. Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion, 3rd edn. Wiley & Sons, ChichesterGoogle Scholar
  126. Kelly MN, Bojarski SA, Rohrer GS (2016) The temperature dependence of the relative grain-boundary energy of Yttria-doped alumina. J Am Ceram Soc 7:1–7Google Scholar
  127. Kim C-S, Rollett AD, Rohrer GS (2006) Grain boundary planes: New dimensions in the grain boundary character distribution. Scripta Mater 54(6):1005–1009CrossRefGoogle Scholar
  128. King HE, Plümper O, Geisler T, Putnis A (2011) Experimental investigations into the silicification of olivine: Implications for the reaction mechanism and acid neutralization. Am Miner 96(10):1503–1511CrossRefGoogle Scholar
  129. King HE, Stimpfl M, Deymier P, Drake MJ, Catlow CRA, Putnis A, de Leeuw NH (2010) Computer simulations of water interactions with low-coordinated forsterite surface sites: Implications for the origin of water in the inner solar system. Earth Planet Sci Lett 300(1–2):11–18CrossRefGoogle Scholar
  130. Kingery WD (1974) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I, grain-boundary characteristics, structure, and electrostatic potential. J Am Ceram Soc 57(1):1–8CrossRefGoogle Scholar
  131. Kiss ÁK, Rauch EF, Lábár JL (2016) Highlighting material structure with transmission electron diffraction correlation coefficient maps. Ultramicroscopy 163:31–37CrossRefGoogle Scholar
  132. Kleebe H-J (2002) Comparison between SEM and TEM imaging techniques to determine grain-boundary wetting in ceramic polycrystals. J Am Ceramic Soc 85(1):43–48.  https://doi.org/10.1111/j.1151-2916.2002.tb00036.x) CrossRefGoogle Scholar
  133. Kliewer KL, Koehler JS (1965) Space charge in ionic crystals I. General approach with applictaion to NaCl. Phys Rev 140:A1226–A1240.  https://doi.org/10.1103/PhysRev.140.A1226
  134. Koch CT, Bhattacharyya S, Rühle M, Satet RL, Hoffmann MJ (2006) Measuring electrostatic potential profiles across amorphous intergranular films by electron diffraction. Microsc Microanal 12(02):160–169CrossRefGoogle Scholar
  135. Kohlstedt DL (1990) Chemical analysis of grain boundaries in an olivine-basalt aggregate using high-resolution, analytical electron microscopy. In: The Brittle-Ductile Transition in Rocks. American Geophysical Union, pp 211–218.  https://doi.org/10.1029/GM056p0211
  136. Kohlstedt DL, Hansen LN (2015) Properties of rocks and minerals–constitutive equations, rheological behavior, and viscosity of rocks, vol 2. Elsevier B.V, AmsterdamGoogle Scholar
  137. Koizumi S, Hiraga T, Tachibana C, Tasaka M, Miyazaki T, Kobayashi T, Takamasa A, Ohashi N, Sano S (2010) Synthesis of highly dense and fine-grained aggregates of mantle composites by vacuum sintering of nano-sized mineral powders. Phys Chem Miner 37(8):505–518CrossRefGoogle Scholar
  138. Langdon TG (2006) Grain boundary sliding revisited: Developments in sliding over four decades. J Mater Sci 41(3):597–609CrossRefGoogle Scholar
  139. Laporte D, Provost A (2000) Equilibrium geometry of a fluid phase in a polycrystalline aggregate with anisotropic surface energies: dry grain boundaries. J Geophys Res Solid Earth 105(B11):25937–25953CrossRefGoogle Scholar
  140. Laumonier M, Farla R, Frost DJ, Katsura T, Marquardt K, Bouvier A-S, Baumgartner LP (2017) Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle. Earth Planet Sci Lett 463:286–297CrossRefGoogle Scholar
  141. Lee C-TA, Harbert A, Leeman WP (2007) Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt. Geochim Cosmochim Acta 71(2):481–496CrossRefGoogle Scholar
  142. Lehovec K (1953) Space-charge layer and distribution of lattice defects at the surface of ionic crystals. J Chem Phys 21:1123–1128CrossRefGoogle Scholar
  143. Lejček P (ed) (2010) Grain boundaries: description, structure and thermodynamics. In: Grain boundary segregation in metals. Springer, Berlin, Heidelberg, pp 5–24.  https://doi.org/10.1007/978-3-642-12505-8_2
  144. Levine JS, Mosher S, Rahl JM (2016) The role of subgrain boundaries in partial melting. J Struct Geol 89:181–196CrossRefGoogle Scholar
  145. Lloyd GE, Farmer AB, Mainprice D (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279(1–4):55–78CrossRefGoogle Scholar
  146. Luo J (2012) Developing interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions. J Am Ceram Soc 95(8):2358–2371CrossRefGoogle Scholar
  147. Luo J, Chiang Y-M (2008) Wetting and prewetting on ceramic surfaces. Annu Rev Mater Res 38(1):227–249CrossRefGoogle Scholar
  148. Luo J, Gupta VK, Yoon DH, Meyer HM (2005) Segregation-induced grain boundary premelting in nickel-doped tungsten. Appl Phys Lett 87(23):1–3CrossRefGoogle Scholar
  149. Mackenzie JK (1958) Second paper on statistics associated with the random disorientation of cubes. Biometrika 45(1/2):229CrossRefGoogle Scholar
  150. Maher K, Johnson NC, Jackson A, Lammers LN, Torchinsky AB, Weaver KL, Bird DK, Brown GE (2016) A spatially resolved surface kinetic model for forsterite dissolution. Geochim Cosmochim Acta 174:313–334CrossRefGoogle Scholar
  151. Mantisi B, Sator N, Guillot B (2017) Structure and transport at grain boundaries in polycrystalline olivine: an atomic-scale perspective. Geochim Cosmochim Acta 219:160–176CrossRefGoogle Scholar
  152. Marquardt H, Marquardt K (2012) Focused ion beam preparation and characterization of single-crystal samples for high-pressure experiments in the diamond-anvil cell. Am Mineral 97:299–304.  https://doi.org/10.2138/am.2012.3911
  153. Marquardt H, Gleason A, Marquardt K, Speziale S, Miyagi L, Neusser G, Wenk H-R, Jeanloz R (2011a) Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering. Phys Rev B 84(6):064131.  https://doi.org/10.1103/PhysRevB.84.064131 CrossRefGoogle Scholar
  154. Marquardt H, Speziale S, Marquardt K, Reichmann HJ, Konôpková Z, Morgenroth W, Liermann HP (2011b) The effect of crystallite size and stress condition on the equation of state of nanocrystalline MgO. J Appl Phys 110(11):8–12.  https://doi.org/10.1063/1.3662491 CrossRefGoogle Scholar
  155. Marquardt K, Petrishcheva E, Gardés E, Wirth R, Abart R, Heinrich W, Garde E (2011c) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: a miniaturized study. Contrib Miner Petrol 162(4):739–749.  https://doi.org/10.1007/s00410-011-0622-7 CrossRefGoogle Scholar
  156. Marquardt K, Ramasse QM, Kisielowski C, Wirth R (2011d) Diffusion in yttrium aluminium garnet at the nanometer-scale: Insight into the effective grain boundary width. Am Miner 96(10):1521–1529.  https://doi.org/10.2138/am.2011.3625 CrossRefGoogle Scholar
  157. Marquardt K, Rohrer GS, Morales L, Rybacki E, Marquardt H, Lin B (2015) The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes. Contrib Miner Petrol 170(4):40.  https://doi.org/10.1007/s00410-015-1193-9 CrossRefGoogle Scholar
  158. Marquardt K, De Graef M, Singh S, Marquardt H, Rosenthal A, Koizuimi S (2017) Quantitative electron backscatter diffraction (EBSD) data analyses using the dictionary indexing (DI) approach: overcoming indexing difficulties on geological materials. Am Mineral 102:1843–1855.  https://doi.org/10.2138/am-2017-6062
  159. Maruyama G, Hiraga T (2017a) Grain-to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate: 2. Grain boundary sliding-induced grain rotation and its role in crystallographic preferred orientation in rocks. J Geophys Res Solid Earth.  https://doi.org/10.1002/2017JB014255
  160. Maruyama G, Hiraga T (2017b) Grain-to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate I: Direct observations. J Geophys Res Solid Earth.  https://doi.org/10.1002/2017JB014255
  161. McClay KR (1977) Pressure solution and Coble creep in rocks and minerals: a review. J Geol Soc 134(1):57–70CrossRefGoogle Scholar
  162. Mcdonnell RD, Spiers CJ (2002) Fabrication of dense forsterite enstatite polycrystals for experimental studies. Phys Chem Miner 29:19–31CrossRefGoogle Scholar
  163. Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262CrossRefGoogle Scholar
  164. Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res 105(B9):21471–21481CrossRefGoogle Scholar
  165. Mellenthin J, Karma A, Plapp M (2008) Phase-field crystal study of grain-boundary premelting. Phys Rev B 78(18):184110CrossRefGoogle Scholar
  166. Milas I, Hinnemann B, Carter EA (2008) Structure of and ion segregation to an alumina grain boundary: implications for growth and creep. J Mater Res 23(5):1494–1508CrossRefGoogle Scholar
  167. Miletich R, Nowak M, Seifert F, Angel RJ, Brandstätter G (1999) High-pressure crystal chemistry of chromous orthosilicate, Cr2SiO4. A single-crystal X-ray diffraction and electronic absorption spectroscopy study. Structure 26:446–459.  https://doi.org/10.1007/s002690050207 Google Scholar
  168. Milke R, Dohmen R, Becker H-W, Wirth R (2007) Growth kinetics of enstatite reaction rims studied on nano-scale, Part I: methodology, microscopic observations and the role of water. Contrib Miner Petrol 154(5):519–533CrossRefGoogle Scholar
  169. Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims; a SIMS study using isotopically doped reactants. Contrib Miner Petrol 142(1):15–26CrossRefGoogle Scholar
  170. Mishin Y, Herzig C (1999) Grain boundary diffusion: recent progress and future research. Mater Sci Eng A 260(1–2):55–71CrossRefGoogle Scholar
  171. Mistler RE, Coble RL (1974) Grain-boundary diffusion and boundary widths in metals and ceramics. J Appl Phys 45(4):1507CrossRefGoogle Scholar
  172. Miyazaki T, Sueyoshi K, Hiraga T (2013) Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502(7471):321–326CrossRefGoogle Scholar
  173. Morris SJS, Jackson I (2009) Diffusionally assisted grain-boundary sliding and viscoelasticity of polycrystals. J Mech Phys Solids 57(4):744–761CrossRefGoogle Scholar
  174. Morrow CP, Kubicki JD, Mueller KT, Cole DR (2010) Description of Mg2+ release from forsterite using Ab initio methods. J Phys Chem C 114:5417–5428.  https://doi.org/10.1021/jp9057719
  175. Mott N (1951) The mechanical properties of metals. Proc Phys Soc 64(9):416CrossRefGoogle Scholar
  176. Mu S, Faul UH (2016) Grain boundary wetness of partially molten dunite. Contrib Miner Petrol 171(5):1–15CrossRefGoogle Scholar
  177. Mussi A, Cordier P, Demouchy S, Vanmansart C (2014) Characterization of the glide planes of the [001] screw dislocations in olivine using electron tomography. Phys Chem Miner 41(7):537–545CrossRefGoogle Scholar
  178. Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Miner 10(1):27–37CrossRefGoogle Scholar
  179. Nichols SJ, Mackwell SJ (1991) Grain growth in porous olivine aggregates. Phys Chem Miner 18(4):269–278CrossRefGoogle Scholar
  180. Ohuchi T, Nakamura M (2007) Grain growth in the forsteritediopside system. Phys Earth Planet Inter 160(1):1–21CrossRefGoogle Scholar
  181. Ohuchi T, Nakamura M, Michibayashi K (2010) Effect of grain growth on cation exchange between dunite and fluid: Implications for chemical homogenization in the upper mantle. Contrib Miner Petrol 160(3):339–357CrossRefGoogle Scholar
  182. Oleg P, Jacques S (2007) Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12. Geochim Cosmochim Acta 71(24):5901–5912.  https://doi.org/10.1016/j.gca.2007.08.031 CrossRefGoogle Scholar
  183. Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57(13):3694–3703Google Scholar
  184. Palmero P, Fantozzi G, Lomello F, Bonnefont G, Montanaro L (2012) Creep behaviour of alumina / YAG composites prepared by different sintering routes. Ceram Int 38(1):433–441.  https://doi.org/10.1016/j.ceramint.2011.07.024 CrossRefGoogle Scholar
  185. Pang Y, Wynblatt P (2006) Effects of Nb doping and segregation on the grain boundary plane distribution in TiO2. J Am Ceram Soc 89(2):666–671.  https://doi.org/10.1111/j.1551-2916.2005.00759.x CrossRefGoogle Scholar
  186. Parman SW, Kurz MD, Hart SR, Grove TL (2005) Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature 437(7062):1140–1143.  https://doi.org/10.1038/nature04215 CrossRefGoogle Scholar
  187. Paterson MS (1990) Rock deformation experimentation. In: Duba AG, Durham WB, Handin JW, Wang HF (eds) The Brittle-Ductile transition in rocks. American Geophysical Union, Washington, pp 187–194.  https://doi.org/10.1029/GM056p0187
  188. Peterson NL (1983) Grain-boundary diffusion in metals. Int Metals Rev 28(2):65–91Google Scholar
  189. Petry C, Chakraborty S, Palme H, Etry CHP, Hakraborty SUC, Alme HEP (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68(20):4179–4188CrossRefGoogle Scholar
  190. Phakey P, Dollinger G, Christie J (1972) Transmission electron microscopy of experimentally deformed olivine crystals. Am Miner 61:117–138Google Scholar
  191. Poirier J-P (1985) Creep of crystals: high-temperature deformation processes in metals, ceramics, and minerals. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  192. Raabe D, Herbig M, Sandlöbes S, Li Y, Tytko D, Kuzmina M, Ponge D, Choi PP (2014) Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr Opin Solid State Mater Sci 18(4):253–261CrossRefGoogle Scholar
  193. Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2(April):113–1127Google Scholar
  194. Randle V, Davies H (2002) A comparison between three-dimensional and two-dimensional grain boundary plane analysis. Ultramicroscopy 90(2–3):153–162CrossRefGoogle Scholar
  195. Randle V, Engler O (2014) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping. CRC Press. https://books.google.de/books?id=yJe9BwAAQBAJ
  196. Rasmussen DR, Simpson YK, Kilaas R, Carter CB (1989) Contrast effects at grooved interfaces. Ultramicroscopy 30:52–57CrossRefGoogle Scholar
  197. Raterron P, Bussod GY, Doukhan N, Doukhan J-C (1997) Early partial melting in the upper mantle: an A.E.M. study of a lherzolite experimentally annealed at hypersolidus conditions. Tectonophysics 279(1–4):79–91CrossRefGoogle Scholar
  198. Raterron P, Chopra P, Doukhan JC (2000) SiO2 precipitation in olivine: ATEM investigation of two dunites annealed at 300 MPa in hydrous conditions. Earth Planet Sci Lett 180(3–4):415–423.  https://doi.org/10.1016/S0012-821X(00)00160-6 CrossRefGoogle Scholar
  199. Raterron P, Ingrin J, Jaoul O, Doukhan N, Elie F (1995) Early partial melting of diopside under high-pressure. Phys Earth Planet Inter 89(1–2):77–88CrossRefGoogle Scholar
  200. Read WT, Schockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289Google Scholar
  201. Reed B, Adams B, Bernier J, Hefferan C, Henrie A, Li S, Lind J, Suter R, Kumar M (2012) Experimental tests of stereological estimates of grain boundary populations. Acta Mater 60(6–7):2999–3010CrossRefGoogle Scholar
  202. Ricoult DL, Kohlstedt DL (1983) Structural width of low-angle grain boundaries in olivine. Phys Chem Miner 9(3–4):133–138CrossRefGoogle Scholar
  203. Roberts JJ, Tyburczy JA (1991) Frequency dependent electrical properties of polycrystalline olivine compacts. J Geophys Res 96(B10):16205CrossRefGoogle Scholar
  204. Rohrer GS (2007) The distribution of grain boundary planes in polycrystals. JOM 59(9):38–42CrossRefGoogle Scholar
  205. Rohrer GS (2011a) Grain boundary energy anisotropy: a review. J Mater Sci 46(18):5881–5895CrossRefGoogle Scholar
  206. Rohrer GS (2011b) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94(3):633–646CrossRefGoogle Scholar
  207. Rohrer GS (2015) The role of grain boundary energy in grain boundary complexion transitions. Curr Opin Solid State Mater Sci 20(5):231–239CrossRefGoogle Scholar
  208. Rohrer GS, Saylor DM, El Dasher B, Adams BL, Rollett AD, Wynblatt P (2004) The distribution of internal interfaces in polycrystals. Zeitschrift für Metallkunde 95(4):197–214CrossRefGoogle Scholar
  209. Rollett A, Rohrer GS (2017) Recrystallization and related annealing phenomena. https://www.elsevier.com/books/recrystallization-and-related-annealing-phenomena/rollett/978-0-08-098235-9
  210. Rollett AD (2004) Crystallographic texture change during grain growth. JOM 56(4):63–68CrossRefGoogle Scholar
  211. Rollett AD, Gottstein G, Shvindlerman LS, Molodov DA (2004) Grain boundary mobility a brief review. Zeitschrift für Metallkunde 95(4):226–229CrossRefGoogle Scholar
  212. Romeu D, Beltrán-del-Rio L, Aragón JL, Gómez A (1999) Detailed atomic structure of arbitrary fcc [100] twist grain boundaries. Phys Rev B 59:5134–5141Google Scholar
  213. Sader K, Brown A, Brydson R, Bleloch A (2010) Quantitative analysis of image contrast in phase contrast STEM for low dose imaging. Ultramicroscopy 110(10):1324–1331CrossRefGoogle Scholar
  214. Sano S, Saito N, Matsuda S-I, Ohashi N, Haneda H (2006) Synthesis of high density and transparent forsterite ceramics using nano-sized precursors and their dielectric properties. J Am Ceram Soc 574(89):568–574CrossRefGoogle Scholar
  215. Sano T, Kim CS, Rohrer GS (2005) Shape evolution of SrTiO3 crystals during coarsening in a titania-rich liquid. J Am Ceram Soc 88(4):993–996.  https://doi.org/10.1111/j.1551-2916.2005.00185.x CrossRefGoogle Scholar
  216. Sano T, Saylor DM, Rohrer GS (2003) Surface energy anisotropy of SrTiO3 at 1400 C in air. J Am Ceram Soc 86(11):1933–1939.  https://doi.org/10.1111/j.1151-2916.2003.tb03584.x CrossRefGoogle Scholar
  217. Saylor DM (2001) The character dependence of interfacial energies in magnesia. Thesis, Carnegie Mellon University, PittsburghGoogle Scholar
  218. Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52(12):3649–3655CrossRefGoogle Scholar
  219. Saylor DM, Morawiec A, Rohrer GS (2003) Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51(13):3675–3686CrossRefGoogle Scholar
  220. Schäfer FN, Foley SF (2002) The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals. Contrib Miner Petrol 143(2):254–261CrossRefGoogle Scholar
  221. Seifert S, O’Neill HSC (1986) Experimental determination of activity-composition relations in Ni2SiO4–Mg2SiO4 and CO2SiO4–Mg2SiO4 olivine sloid solutions at 1200K. Geochemica et Cosmochemica Acta 51:97–104.  https://doi.org/10.1016/0016-7037(87)90010-X CrossRefGoogle Scholar
  222. Shirpour M, Merkle R, Lin CT, Maier J (2012) Nonlinear electrical grain boundary properties in proton conducting YBaZrO3 supporting the space charge depletion model. Phys Chem Chem Phys 14(2):730.  https://doi.org/10.1039/c1cp22487e CrossRefGoogle Scholar
  223. Smith CS (1948) Introduction to grains, phases, and interfaces-an interpretation of microstructure. Trans Met Soc AIME 175:15–51Google Scholar
  224. Solomon SC (1972) Seismic-wave and partial melting in the upper mantle of North America. J Geophys Res 77(8):1483–1502Google Scholar
  225. Sommer H, Regenauer-Lieb K, Gasharova B, Siret D (2008) Grain boundaries: a possible water reservoir in the Earth’s mantle? Miner Petrol 94(1–2):1–8CrossRefGoogle Scholar
  226. Steinbach I (2009) Phase-field models in materials science. Modell Simul Mater Sci Eng 17(7):073001CrossRefGoogle Scholar
  227. Sun X-Y, Cordier P, Taupin V, Fressengeas C, Jahn S (2016) Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations. Phil Mag 96(17):1757–1772CrossRefGoogle Scholar
  228. Sundberg M, Cooper RF (2008) Crystallographic preferred orientation produced by diffusional creep of harzburgite: effects of chemical interactions among phases during plastic flow. J Geophys Res Solid Earth 113(12):1–16Google Scholar
  229. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials, vol 51. Clarendon Press, OxfordGoogle Scholar
  230. Takei Y (1998) Constitutive mechanical relations of solid-liquid composites in terms of grain boundary contiguity. J Geophys Res 103(98):18183–18203CrossRefGoogle Scholar
  231. Takei Y (2017) Effects of partial melting on seismic velocity and attenuation: a new insight from experiments. Ann Rev Earth Planet Sci 45:447–470.  https://doi.org/10.1146/annurev-earth-063016-015820
  232. Takei Y, Holtzman BK (2009a) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 2. Compositional model for small melt fractions 114:1–18Google Scholar
  233. Takei Y, Holtzman BK (2009b) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J Geophys Res 114(6):B06205.  https://doi.org/10.1029/2008JB005850 Google Scholar
  234. Tan BH, Jackson I, Fitz Gerald JD (1997) Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophys Res Lett 24(9):1055–1058CrossRefGoogle Scholar
  235. Tan BH, Jackson I, Fitz Gerald JD (2001) High-temperature viscoelasticity of fine-grained polycrystalline olivine. Phys Chem Miner 28(9):641–664CrossRefGoogle Scholar
  236. Tasaka M, Hiraga T, Zimmerman ME (2013) Influence of mineral fraction on the rheological properties of forsterite+enstatite during grain-size-sensitive creep: 2. Deformation experiments. Journal of Geophysical Research: Solid. Earth 118(8):3991–4012Google Scholar
  237. ten Grotenhuis SM, Drury MR, Peach CJ, Spiers CJ (2004) Electrical properties of fine-grained olivine: evidence for grain boundary transport. J Geophys Res B: Solid Earth 109(6):1–9Google Scholar
  238. ten Grotenhuis SM, Drury MR, Spiers CJ, Peach CJ (2005) Melt distribution in olivine rocks based on electrical conductivity measurements. J Geophys Res 110(B12):B12201CrossRefGoogle Scholar
  239. Toramaru A, Fujii N (1986a) Connectivity of melt phase in a partially molten peridotite. J Geophys Res 91(B9):9239CrossRefGoogle Scholar
  240. Toramaru A, Fujii N (1986b) Connectivity of melt phase in a partially molten upper mantle rocks from experiments and percolation theory. J Geophys Res 91(B9):9239–9252CrossRefGoogle Scholar
  241. Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. ONR technical reportGoogle Scholar
  242. Van der Wal D, Chopra P, Drury M, Gerald JF (1993) Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys Res Lett 20(14):1479–1482CrossRefGoogle Scholar
  243. Vaughan PJ, Kohlstedt DL, Waff HS (1982) Distribution of the glass phase in hot-pressed, olivine-basalt aggregates: an electron microscopy study. Contrib Miner Petrol 81:253–261CrossRefGoogle Scholar
  244. von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res 91:9261CrossRefGoogle Scholar
  245. Vonlanthen P, Grobety B (2008) CSL grain boundary distribution in alumina and zirconia ceramics. Ceram Int 34(6):1459–1472CrossRefGoogle Scholar
  246. Waff HS, Bulau JR (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostratic stress conditions. J Geophys Res 84:6109–6114Google Scholar
  247. Wagner J, Adjaoud O, Marquardt K, Jahn S (2016) Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations. Contrib Miner Petrol 171:98.  https://doi.org/10.1007/s00410-016-1308-y CrossRefGoogle Scholar
  248. Walte N, Rubie D, Bons P, Frost D (2011) Deformation of a crystalline aggregate with a small percentage of high-dihedral-angle liquid: Implications for coremantle differentiation during planetary formation. Earth Planet Sci Lett 305(1–2):124–134CrossRefGoogle Scholar
  249. Walte NP, Bons PD, Koehn D (2003) Disequilibrium melt distribution during static recrystallization. Tectonophysics 31(11):1009–1012Google Scholar
  250. Walte NP, Bons PD, Passchier CW (2005) Deformation of melt-bearing systemsinsight from in situ grain-scale analogue experiments. J Struct Geol 27(9):1666–1679CrossRefGoogle Scholar
  251. Wanamaker BJ, Kohlstedt DL (1991) The effect of melt composition on the wetting angle between silicate melts and olivine. Phys Chem Miner 18(1):26–36CrossRefGoogle Scholar
  252. Watanabe T (1979) Misorientation dependence of grain boundary sliding in 1010 tilt zinc bicrystals. Philosophical magazine. Phys Condensed Matter, Defects Mech Prop [0141-8610] 40(5):667–683Google Scholar
  253. Watanabe T (1983) Observations of plane-matching grain boundaries by electron channelling patterns. Philosophical magazine. A, Physics of condensed matter, defects and Mech Prop [0141-8610], 47(1):141 –146Google Scholar
  254. Watanabe T, Ara KI, Yoshim K, Oikawa H (1989) Texture and grain boundary character distribution (GBCD) in rapidly solidified and annealed Fe-6.5 mass% Si ribbons. Philos Mag Lett 59(2):47–52.  https://doi.org/10.1080/09500838908214776 CrossRefGoogle Scholar
  255. Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25(1):70–78CrossRefGoogle Scholar
  256. Wenk H-R (1985) Preferred orientation in deformed metal and rocks: an introduction to modern texture analysis. Academic press Inc, New YorkGoogle Scholar
  257. White JC, White SH (1981) On the structure of grain boundaries in tectonites. Tectonophysics 78(1–4):613–628CrossRefGoogle Scholar
  258. Williams DB, Carter BC (2009) Transmission electron microscopy. Springer, USGoogle Scholar
  259. Wirth R (1996) Thin amorphous films (1–2 nm) at olivine grain boundaries in mantle xenoliths from San Carlos, Arizona. Contrib Mineral Petrol 124(1):44–54CrossRefGoogle Scholar
  260. Wirth R (2004) Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876.  https://doi.org/10.1127/0935-1221/2004/0016-0863
  261. Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1–2):65–101CrossRefGoogle Scholar
  262. Yasuda S, Yoshida H, Yamamoto T, Sakuma T (2004) Improvement of high-temperature creep resistance in polycrystalline Al2O3 by cations co-doping. Mater Trans 45(7):2078–2082.  https://doi.org/10.2320/matertrans.45.2078 CrossRefGoogle Scholar
  263. Zaefferer S, Wright SI (2009) Electron backscatter diffraction in materials science, 2nd edn. Springer, New YorkGoogle Scholar
  264. Zhou W, Wang ZL (2007) Scanning microscopy for nanotechnology: techniques and applications. Springer, New York. https://books.google.de/books?id=i3XGkx1dc0UC

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.Department of Earth, Atmospheric and Planetary sciencesMassachusetts institute of technologyCambridgeUSA
  3. 3.Research School of Earth SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations