Physics and Chemistry of Minerals

, Volume 45, Issue 4, pp 367–379 | Cite as

Phase stability of iron germanate, FeGeO3, to 127 GPa

  • R. DuttaEmail author
  • S. J. Tracy
  • C. V. Stan
  • V. B. Prakapenka
  • R. J. Cava
  • T. S. Duffy
Original Paper


The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at ~ 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments (~ 1200–2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.


Germanates Phase-transitions Diamond anvil cell High-pressure 



The authors are grateful to Drs. J. Wicks, S. Tkachev, C. Prescher, and J. Krizan for experimental assistance. This work was supported by the National Science Foundation (EAR-1415321). The authors’ acknowledge use of the Advanced Photon Source, an Office of Science User Facility, U.S. Department of Energy. GeoSoilEnviroCARS (GSECARS, Sector 13), is supported by the NSF Earth Sciences (Grant No: EAR-1128799) and the Department of Energy, Geosciences (Grant No. DE-FG02-94ER14466). C. Stan acknowledges support from DOE Office of Science User Facility contract No. DE-AC02-05CH11231. The use of the gas-loading facility at GSECARS was partially supported by the Consortium for Materials Properties Research in Earth Sciences.

Supplementary material

269_2017_927_MOESM1_ESM.docx (110 kb)
Supplementary material 1 (DOCX 108 KB)


  1. Badro J (2014) Spin transitions in mantle minerals. Annu Rev Earth Planet Sci 42:231–248CrossRefGoogle Scholar
  2. Bremholm M, Dutton SE, Stephens PW, Cava RJ (2011) NaIrO3—a pentavalent post-perovskite. J Solid State Chem 184:601–607CrossRefGoogle Scholar
  3. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. Cohen RE, Lin Y (2014) Prediction of a potential high-pressure structure of FeSiO3. Phys Rev B 90:140102CrossRefGoogle Scholar
  5. Dorfman SM, Shieh SR, Meng Y et al (2012) Synthesis and equation of state of perovskites in the (Mg,Fe)3Al2Si3O12 system to 177 GPa. Earth Planet Sci Lett 357–358:194–202CrossRefGoogle Scholar
  6. Dorfman SM, Meng Y, Prakapenka VB, Duffy TS (2013) Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite. Earth Planet Sci Lett 361:249–257CrossRefGoogle Scholar
  7. Duffy T, Madhusudhan N, Lee KKM (2015) Mineralogy of super-earth planets. In: Schubert G (ed) Treatise on geophysics, Second edn. Elsevier, Oxford, pp 149–178CrossRefGoogle Scholar
  8. Fei Y, Ricolleau A, Frank M et al (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186CrossRefGoogle Scholar
  9. Fischer RA, Campbell AJ, Shofner GA et al (2011) Equation of state and phase diagram of FeO. Earth Planet Sci Lett 304:496–502CrossRefGoogle Scholar
  10. Fujino K, Nishio-Hamane D, Suzuki K et al (2009) Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys Earth Planet Inter 177:147–151CrossRefGoogle Scholar
  11. Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Naturwiss 14:477–485CrossRefGoogle Scholar
  12. Haines J, Léger JM (1993) X-ray diffraction study of TiO2 up to 49 GPa. Phys B Condens Matter 192:233–237CrossRefGoogle Scholar
  13. Haines J, Léger JM, Chateau C et al (1998) Ferroelastic phase transition in rutile-type germanium dioxide at high pressure. Phys Rev B 58:R2909–R2912CrossRefGoogle Scholar
  14. Haines J, Léger JM, Chateau C, Pereira AS (2000) Structural evolution of rutile-type and CaCl2-type germanium dioxide at high pressure. Phys Chem Miner 27:575–582CrossRefGoogle Scholar
  15. Hattori T, Matsuda T, Tsuchiya T et al (1999) Clinopyroxene-perovskite phase transition of FeGeO3 under high pressure and room temperature. Phys Chem Miner 26:212–216CrossRefGoogle Scholar
  16. Hattori T, Tsuchiya T, Nagai T, Yamanaka T (2001) Sequential high-pressure transformations of FeGeO3 high-P clinopyroxene (C2/c) at temperatures up to 365 °C. Phys Chem Miner 28:377–387CrossRefGoogle Scholar
  17. Hirose K, Kawamura K, Ohishi Y et al (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90:262–265CrossRefGoogle Scholar
  18. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data; the use of regression diagnostics. Mineral Mag 61(1):65–77CrossRefGoogle Scholar
  19. Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxenes. Am Mineral 79:1032–1041Google Scholar
  20. Ismailova L, Bykova E, Bykov M et al (2016) Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Sci Adv 2:e1600427Google Scholar
  21. Ito E, Matsui Y (1979) High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry. Phys Chem Miner 4:265–273CrossRefGoogle Scholar
  22. Jacobsen SD, Lin J-F, Angel RJ et al (2005) Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures. J Synchrotron Radiat 12:577–583CrossRefGoogle Scholar
  23. Jephcoat AP, Besedin SP (1996) Temperature measurement and melting determination in the laser-heated diamond-anvil cell. Philos Trans Math Phys Eng Sci 354:1333–1360CrossRefGoogle Scholar
  24. Kuwayama Y, Hirose K, Sata N, Ohishi Y (2005) The pyrite-type high-pressure form of silica. Science 309:923–925CrossRefGoogle Scholar
  25. Lay T, Hernlund J, Garnero EJ, Thorne MS (2006) A post-perovskite lens and D″ heat flux beneath the central Pacific. Science 314:1272–1276CrossRefGoogle Scholar
  26. Leinenweber K, Utsumi W, Tsuchida Y et al (1991) Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys Chem Miner 18(4):244–250CrossRefGoogle Scholar
  27. Leinenweber K, Wang Y, Yagi T, Yusa H (1994) An unquenchable perovskite phase of MgGeO 3 and comparison with MgSiO3 perovskite. Am Miner 79:197–199Google Scholar
  28. Lin J-F, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275CrossRefGoogle Scholar
  29. Lindsley DH, Davis BTC, Macgregor ID (1964) Ferrosilite (FeSiO3): synthesis at high pressures and temperatures. Science 144:73–74CrossRefGoogle Scholar
  30. Liu LG (1977) The post-spinel phases of twelve silicates and germanates. In: Manghnani MH, Akimoto S (eds) High-pressure research; applications in geophysics. Academic, New York, pp 245–253Google Scholar
  31. Mao W, Shu J, Hu J et al (2002) Displacive transition in magnesiowüstite. J Phys Condens Matter 14:11349CrossRefGoogle Scholar
  32. Mao WL, Shen G, Prakapenka VB et al (2004) Ferromagnesian postperovskite silicates in the D″ layer of the Earth. Proc Natl Acad Sci USA 101:15867–15869CrossRefGoogle Scholar
  33. Micoulaut M, Cormier L, Henderson GS (2006) The structure of amorphous, crystalline and liquid GeO2. J Phys Condens Matter 18:R753CrossRefGoogle Scholar
  34. Ming L-C, Bassett WA (1975) High-pressure phase transformations in the system of MgSiO3–FeSiO3. Earth Planet Sci Lett 27:85–89CrossRefGoogle Scholar
  35. Ming LC, Kim Y-H, Uchida T et al (2006) In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am Miner 91:120–126CrossRefGoogle Scholar
  36. Murakami M, Hirose K, Ono S, Ohishi Y (2003) Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in-situ X-ray measurements. Geophys Res Lett 30:1207CrossRefGoogle Scholar
  37. Murakami M, Hirose K, Kawamura K et al (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  38. Nagai T, Hattori T, Tsuchiya T, Yamanaka T (1998) First observation of FeGeO3-perovskite under high pressure. Solid State Commun 107:223–225CrossRefGoogle Scholar
  39. Nakatsuka D, Yoshino T, Kano J et al (2013) High-pressure synthesis, crystal structure and magnetic property of ilmenite-type FeGeO3. J Solid State Chem 198:520–524CrossRefGoogle Scholar
  40. Nakatsuka A, Kuribayashi S, Nakayama N et al (2015) Temperature dependence of crystal structure of CaGeO3 high-pressure perovskite phase and experimental determination of its Debye temperatures studied by low- and high-temperature single-crystal X-ray diffraction. Am Miner 100:1190–1202CrossRefGoogle Scholar
  41. Nishio-Hamane D, Yagi T, Ohshiro M et al (2010) Decomposition of perovskite FeTiO3 into wüstite Fe1-xTi0.5xO and orthorhombic FeTi3O7 at high pressure. Phys Rev B 82:092103CrossRefGoogle Scholar
  42. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448CrossRefGoogle Scholar
  43. Ono S, Hirose K, Nishiyama N, Isshiki M (2002) Phase boundary between rutile-type and CaCl2-type germanium dioxide determined by in situ X-ray observations. Am Miner 87:99–102CrossRefGoogle Scholar
  44. Ono S, Tsuchiya T, Hirose K, Ohishi Y (2003a) Phase transition between the CaCl2-type and α-PbO2-type structures of germanium dioxide. Phys Rev B 68:134108CrossRefGoogle Scholar
  45. Ono S, Tsuchiya T, Hirose K, Ohishi Y (2003b) High-pressure form of pyrite-type germanium dioxide. Phys Rev B 68:014103CrossRefGoogle Scholar
  46. Pakhomova A, Ismailova L, Bykova E et al (2017) A new high-pressure phase transition in clinoferrosilite: in situ single-crystal X-ray diffraction study. Am Miner 102:666–673CrossRefGoogle Scholar
  47. Plonka AM, Dera P, Irmen P et al (2012) β-diopside, a new ultrahigh-pressure polymorph of CaMgSi2O6 with six-coordinated silicon. Geophys Res Lett 39:L24307CrossRefGoogle Scholar
  48. Prakapenka VB, Dubrovinsky LS, Shen G et al (2003) α-PbO2-type high-pressure polymorph of GeO2. Phys Rev B 67:132101CrossRefGoogle Scholar
  49. Prakapenka VB, Shen G, Dubrovinsky LS et al (2004) High pressure induced phase transformation of SiO2 and GeO2: difference and similarity. J Phys Chem Solids 65(8):1537–1545CrossRefGoogle Scholar
  50. Prakapenka VB, Kubo A, Kuznetsov A et al (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 28(3):225–235CrossRefGoogle Scholar
  51. Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35(3):223–230CrossRefGoogle Scholar
  52. Redhammer GJ, Senyshyn A, Tippelt G et al (2012) Magnetic and low-temperature structural behavior of clinopyroxene-type FeGeO3: a neutron diffraction, magnetic susceptibility, and 57Fe Mössbauer study. Am Miner 97:694–706CrossRefGoogle Scholar
  53. Ringwood AE, Seabrook M (1963) High-pressure phase transformations in germanate pyroxenes and related compounds. J Geophys Res 68:4601–4609CrossRefGoogle Scholar
  54. Royen P, Forwerg W (1963) Darstellung und kristallographische Eigenschaften der Metagermanate des Mangans, Eisens und Kobalts. Z Für Anorg Allg Chem 326:113–126CrossRefGoogle Scholar
  55. Sato H, Endo S, Sugiyama M et al (1991) Baddeleyite-type high-pressure phase of TiO2. Science 251:786CrossRefGoogle Scholar
  56. Shiraki K, Tsuchiya T, Ono S (2003) Structural refinements of high-pressure phases in germanium dioxide. Acta Crystallogr B 59:701–708CrossRefGoogle Scholar
  57. Shu J, Mao H, Hu J et al (1998) Single-crystal X-ray diffraction of wüstite to 30 GPa hydrostatic pressure. Neues Jahrb Für Miner 309–323Google Scholar
  58. Shukla G, Topsakal M, Wentzcovitch RM (2015) Spin crossovers in iron-bearing MgSiO3 and MgGeO3: their influence on the post-perovskite transition. Phys Earth Planet Inter 249:11–17CrossRefGoogle Scholar
  59. Stackhouse S, Brodholt JP, Price GD (2006) Elastic anisotropy of FeSiO3 end-members of the perovskite and post-perovskite phases. Geophys Res Lett 33:L01304CrossRefGoogle Scholar
  60. Stan CV, Dutta R, Cava RJ, Prakapenka VB, Duffy TS (2017) High-pressure study of perovskites and post-perovskites in the (Mg,Fe)GeO3 System. Inorg Chem 56(14):8026–8035CrossRefGoogle Scholar
  61. Tateno S, Hirose K, Sata N, Ohishi Y (2006) High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. Phys Chem Miner 32:721CrossRefGoogle Scholar
  62. Tateno S, Hirose K, Sata N, Ohishi Y (2007) Solubility of FeO in (Mg,Fe)SiO3 perovskite and the post-perovskite phase transition. Phys Earth Planet Inter 160:319–325CrossRefGoogle Scholar
  63. Tateno S, Hirose K, Sata N, Ohishi Y (2010) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Phys Earth Planet Inter 181:54–59CrossRefGoogle Scholar
  64. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  65. Tsuchiya T, Tsuchiya J (2011) Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures. Proc Natl Acad Sci 108:1252–1255CrossRefGoogle Scholar
  66. Weber H-P (1983) Ferrosilite III, the high-temperature polymorph of FeSiO3. Acta Crystallogr C 39:1–3CrossRefGoogle Scholar
  67. Wicks JK, Jackson JM, Sturhahn W et al (2015) Thermal equation of state and stability of (Mg0.06Fe0.94)O. Phys Earth Planet Inter 249:28–42CrossRefGoogle Scholar
  68. Wilson NC, Russo SP, Muscat J, Harrison NM (2005) High-pressure phases of FeTiO3 from first principles. Phys Rev B 72:024110CrossRefGoogle Scholar
  69. Wu X, Qin S, Dubrovinsky L (2011) Investigation into high-pressure behavior of MnTiO3: X-ray diffraction and Raman spectroscopy with diamond anvil cells. Geosci Front 2:107–114CrossRefGoogle Scholar
  70. Yusa H, Tsuchiya T, Akaogi M et al (2014) Postperovskite phase transition of ZnGeO3: comparative crystal chemistry of postperovskite phase transition from germanate perovskites. Inorg Chem 53:11732–11739CrossRefGoogle Scholar
  71. Zhang L, Meng Y, Yang W et al (2014) Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 344:877–882CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of GeosciencesPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.GeoSoilEnviroCARSUniversity of Chicago, Argonne National LaboratoryArgonneUSA

Personalised recommendations