Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 4, pp 353–359 | Cite as

Pressure-dependent Raman spectra of Ba5(PO4)3Cl alforsite

  • Shuangmeng Zhai
  • Zeming Li
  • Sean R. Shieh
  • Ching-Pao Wang
  • Weihong Xue
Original Paper
  • 147 Downloads

Abstract

The pressure-dependent Raman spectra of synthetic alforsite, Ba5(PO4)3Cl, were investigated up to 34.9 GPa using a DAC at room temperature. During compression to greater than 20 GPa, new Raman active peaks of Ba5(PO4)3Cl were observed. The Raman frequencies of all observed bands for Ba5(PO4)3Cl alforsite increase continuously with increasing pressure. The quantitative analysis of PO4 internal vibrational pressure dependences for different Raman bands in alforsite shows that the ν3 anti-symmetric stretching modes have larger pressure coefficients (from 4.24 to 5.46 cm−1/GPa) whereas, the ν4 anti-symmetric bending vibrations have smaller pressure coefficients (from 1.16 to 2.04 cm−1/GPa). The external modes show larger pressure coefficients (from 4.71 to 5.54 cm−1/GPa). The PO4 internal modes in Ba5(PO4)3Cl alforsite give isothermal mode Grüneisen parameters varying from 0.147 to 0.488, which yields an average PO4 internal mode Grüneisen parameter of 0.314. On the other hand, the external modes give isothermal mode Grüneisen parameters from 1.583 to 2.030. The external modes mainly contribute to the bulk Grüneisen parameter since the bulk thermochemical Grüneisen parameter was determined as 1.44.

Keywords

Alforsite Ba5(PO4)3Cl Raman spectra High pressure 

Notes

Acknowledgements

The manuscript was improved by Dr. Terry Mernagh. The authors thank Prof. T. Tsuchiya for his editorial handling. Critical comments and suggestion from two anonymous reviewers are helpful to improve the manuscript. This work was financially supported by National Natural Science Foundation of China (Grant no. 41372040), the Knowledge Innovation Program of the Institute of Geochemistry, Western Light Talents Training Program of Chinese Academy of Sciences, and by National Science and Engineering Research Council of Canada.

References

  1. Allan DR, Angel RJ, Miletich R, Reichmann H, Brunet F (1996) High-pressure powder-diffraction studies of apatite Ca5(PO4)3(OH, F, Cl). ESRF report, experimental number:HC439Google Scholar
  2. Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500CrossRefGoogle Scholar
  3. Babu R, Jena H, Kutty KG, Nagarajan K (2011) Thermodynamic functions of Ba10(PO4)6Cl2, Sr10(PO4)6Cl2 and Ca10(PO4)6Cl2. Thermochim Acta 526:78–82CrossRefGoogle Scholar
  4. Baur WH (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallogr B 30:1195–1215CrossRefGoogle Scholar
  5. Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich R, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Miner 11:1023–1035CrossRefGoogle Scholar
  6. Chernorukov NG, Knyazev AV, Bulanov EN (2011) Phase transitions and thermal expansion of apatite-structured compounds. Inorg Mater 47:172–177CrossRefGoogle Scholar
  7. Comodi P, Liu Y, Frezzotti ML (2001a) Structural and vibrational behaviour of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation. Phys Chem Miner 28:225–231CrossRefGoogle Scholar
  8. Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001b) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28:219–224CrossRefGoogle Scholar
  9. Fan D, Ma M, Wei S, Chen Z, Xie H (2013a) In-situ synchrotron powder X-ray diffraction study of vanadinite at room temperature and high pressure. High Temp High Press 42:441–449Google Scholar
  10. Fan D, Wei S, Liu J, Li Y, Xie H (2013b) X-ray diffraction study of calcium-lead fluorapatite solid solution at high pressure: the composition dependence of the bulk modulus and its pressure derivative. High Temp High Press 42:69–80Google Scholar
  11. Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Miner 37:1–9CrossRefGoogle Scholar
  12. Forien JB, Fleck C, Krywka C, Zolotoyabko E, Zaslansky P (2015) In situ compressibility of carbonated hydroxyapatite in tooth dentine measured under hydrostatic pressure by high energy X-ray diffraction. J Mech Behav Biomed Mater 50:171–179CrossRefGoogle Scholar
  13. Frost RL, Palmer SJ (2007) A Raman spectroscopic study of the phosphate mineral pyromorphite Pb5(PO4)3Cl. Polyhedron 26:4533–4541CrossRefGoogle Scholar
  14. Gatta GD, Lee Y, Kao CC (2009) Elastic behavior of vanadinite, Pb10(VO4)6Cl2, a microporous non-zeolitic mineral. Phys Chem Miner 36:311–317CrossRefGoogle Scholar
  15. Gillet P, Guyot F, Malezieux JM (1989) High-pressure, high-temperature Raman spectroscopy of Ca2GeO4 (olivine form): some insights on anharmonicity. Phys Earth Planet Inter 58:141–154CrossRefGoogle Scholar
  16. Gillet P, Fiquet G, Maldzieux JM, Geiger C (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Miner 4:651–664CrossRefGoogle Scholar
  17. Gillet P, Daniel I, Guyot F (1997) Anharmonic properties of Mg2SiO4-forsterite measured from the volume dependence of the Raman spectrum. Eur J Miner 9:255–262CrossRefGoogle Scholar
  18. Griffith WP (1969) Raman spectroscopy of minerals. Nature 224:264–266CrossRefGoogle Scholar
  19. Hata M, Marumo F, Iwai S (1979) Structure of barium chlorapatite. Acta Crystallogr B 35:2382–2384CrossRefGoogle Scholar
  20. He Q, Liu X, Hu X, Deng L, Chen Z, Li B, Fei Y (2012) Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Miner 39:219–226CrossRefGoogle Scholar
  21. He Q, Liu X, Li B, Deng L, Chen Z, Liu X, Wang H (2013) Expansivity and compressibility of strontium fluorapatite and barium fluorapatite determined by in situ X-ray diffraction at high-T/P conditions: significance of the M-site cations. Phys Chem Miner 40:349–360CrossRefGoogle Scholar
  22. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Rev Miner Geochem 48:1–12CrossRefGoogle Scholar
  23. Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170CrossRefGoogle Scholar
  24. Huminicki DMC, Hawthorne FC (2002) The crystal chemistry of the phosphate minerals. Rev Miner Geochem 48:123–253CrossRefGoogle Scholar
  25. Ju G, Hu Y, Chen L, Wang X, Mu Z (2013) Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La, Ce, Gd, Tb and Lu). Mater Res Bull 48:2598–2603CrossRefGoogle Scholar
  26. Kim D, Kim SC, Bae JS, Kim S, Kim SJ, Park JC (2016) Eu2+-activated alkaline-earth halophosphates, M5(PO4)3X:Eu2+ (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-selective crystal field effect. Inorg Chem 55:8359–8370CrossRefGoogle Scholar
  27. Klee W (1970) The vibrational spectra of the phosphate ions in fluorapatite. Z Kristallogr 131:95–102CrossRefGoogle Scholar
  28. Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D: Appl Phys 42:075413CrossRefGoogle Scholar
  29. Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Miner 93:1581–1584CrossRefGoogle Scholar
  30. Liu X, Fleet ME, Shieh SR, He Q (2011a) Synthetic lead bromapatite: X-ray structure at ambient pressure and compressibility up to about 20 GPa. Phys Chem Miner 38:397–406CrossRefGoogle Scholar
  31. Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011b) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: Significance of carbonate. Am Miner 96:74–80CrossRefGoogle Scholar
  32. Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pd and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J Appl Phys 49:3276–3283CrossRefGoogle Scholar
  33. Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31:580–584CrossRefGoogle Scholar
  34. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  35. Newberry NG, Essene EJ, Peacor DR (1981) Alforsite, a new member of the apatite group: the barium analogue of chlorapatite. Am Miner 66:1050–1053Google Scholar
  36. Noginov MA, Loutts GB, Bonner CE, Taylor S, Stefanos S, Wynne RM, Lasley BA (2000) Crystal growth and characterization of a new laser material, Nd: Ba5(PO4)3Cl. J Opt Soc Am B 17:1329–1334CrossRefGoogle Scholar
  37. O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232CrossRefGoogle Scholar
  38. O’Shea DC, Bartlett ML, Young RA (1974) Compositional analysis of apatites with laser-Raman spectroscopy: (OH, F, Cl) apatites. Arch Oral Biol 19:995–1006CrossRefGoogle Scholar
  39. Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Miner Geochem 48:13–49CrossRefGoogle Scholar
  40. Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Miner 22:163–179CrossRefGoogle Scholar
  41. Sato M, Tanaka T, Ohta M (1994) Photostimulated luminescence and structural characterization of Ba5(PO4)3Cl:Eu2+ phosphors. J Electrochem Soc 141:1851–1855CrossRefGoogle Scholar
  42. Shankland TJ, Bass JD (1988) Elastic properties and equations of state. American Geophysical Union, Washington, DCCrossRefGoogle Scholar
  43. Toumi M, Smiri-Dogguy L, Bulou A (2000) Crystal structure and polarized Raman spectra of Ca6Sm2Na2(PO4)6F2. J Solid State Chem 149:308–313CrossRefGoogle Scholar
  44. Wei S, Ma M, Fan D, Yang J, Zhou W, Li B, Chen Z, Xie H (2013) Compressibility of mimetite and pyromorphite at high pressure. High Pressure Res 33:27–34CrossRefGoogle Scholar
  45. White T, Ferraris C, Kim J, Madhavi S (2005) Apatite—an adaptive framework structure. Rev Miner Geochem 57:307–401CrossRefGoogle Scholar
  46. Williams Q, Knittle E (1996) Infrared and raman spectra of Ca5(PO4)3F-flurapatite at high pressures: compression-induced changes in phosphate site and Davydov splitting. J Phys Chem Solid 57:417–422CrossRefGoogle Scholar
  47. Yoo HS, Vaidyanathan S, Kim SW, Jeon DY (2009) Synthesis and photoluminescence properties of Yb2+ doped Ba5(PO4)3Cl phosphor for white light-emitting diodes. Opt Mater 31:1555–1558CrossRefGoogle Scholar
  48. Yu XE, Hartl H, Schulz HJ, Thiede M (1988) Properties of barium chlorophosphate (apatite) luminophors activated by divalent europium. Z Anorg Allg Chem 567:60–68CrossRefGoogle Scholar
  49. Zhai S, Wu X, Ito E (2010) High-pressure Raman spectra of tuite, γ-Ca3(PO4)2. J Raman Spectrosc 41:1011–1013CrossRefGoogle Scholar
  50. Zhai S, Liu A, Xue W, Song Y (2011a) High-pressure Raman spectroscopic studies on orthophosphates Ba3(PO4)2 and Sr3(PO4)2. Solid State Commun 151:276–279CrossRefGoogle Scholar
  51. Zhai S, Xue W, Yamazaki D, Shan S, Ito E, Tomioka N, Shimojuku A, Funakoshi K (2011b) Compressibility of strontium orthophosphate Sr3(PO4)2 at high pressure. Phys Chem Miner 38:357–361CrossRefGoogle Scholar
  52. Zhai S, Shieh SR, Xue W, Xie T (2015a) Raman spectra of stronadelphite Sr5(PO4)3F at high pressures. Phys Chem Miner 42:579–585CrossRefGoogle Scholar
  53. Zhai S, Wu X, Xue W (2015b) Pressure-dependent Raman spectra of β-Ca3(PO4)2 whitlockite. Phys Chem Miner 42:303–308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shuangmeng Zhai
    • 1
  • Zeming Li
    • 1
    • 2
  • Sean R. Shieh
    • 3
  • Ching-Pao Wang
    • 3
  • Weihong Xue
    • 1
  1. 1.Key Laboratory of High-temperature and High-pressure Study of the Earth’s Interior, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Earth SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations