Skip to main content
Log in

Crystal structure and spectroscopic behavior of synthetic novgorodovaite Ca2(C2O4)Cl2·2H2O and its twinned triclinic heptahydrate analog

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Synthetic novgorodovaite analog Ca2(C2O4)Cl2·2H2O is identical to its natural counterpart. It crystallizes in the monoclinic I2/m space group with a = 6.9352(3), b = 7.3800(4), c = 7.4426(3) Å, β = 94.303(4)°, V = 379.85(3) Å3 and Z = 2. The heptahydrate analog, Ca2(C2O4)Cl2·7H2O, crystallizes as triclinic twins in the P \(\overline{1}\) space group with a = 7.3928(8), b = 8.9925(4), c = 10.484(2) Å, α = 84.070(7), β = 70.95(1), γ = 88.545(7)°, V = 655.3(1) Å3 and Z = 2. The crystal packing of both calcium oxalate–chloride double salts favors the directional bonding of oxalate, C2O4 2−, ligands to calcium ions as do other related calcium oxalate minerals. The π-bonding between C and O atoms of the C2O4 2− oxalate group leaves sp 2-hydridised orbitals of the oxygen atoms available for bonding to Ca. Thus, the Ca–O bonds in both calcium oxalate–chloride double salts are directed so as to lie in the plane of the oxalate group. This behavior is reinforced by the short O···O distances between the oxygens attached to a given carbon atom, which favors them bonding to a shared Ca atom in bidentate fashion. Strong bonding in the plane of the oxalate anion and wide spacing perpendicular to that plane due to repulsion between oxalate π-electron clouds gives rise to a polymerized structural units which are common to both hydrates, explaining the nearly equal cell constants ~7.4 Å which are defined by the periodicity of Ca-oxalate chains in the framework (monoclinic b ≈ triclinic a). When compared with novgorodovaite, the higher water content of Ca2(C2O4)Cl2·7H2O leads to some major differences in their structures and ensuing physical properties. While novgorodovaite has a three-dimensional framework structure, in the higher hydrate, the highly polar water molecules displace chloride ions from the calcium coordination sphere and surround them through OwH···Cl hydrogen bonds. As a result, polymerization in Ca2(C2O4)Cl2·7H2O solid is limited to the formation of two-dimensional Ca2(C2O4)(H2O)5 slabs parallel to (001), inter-layered with hydrated chloride anions. This layered structure accounts for (001) being both a perfect cleavage and a twin interface plane. The infrared and Raman spectra of both salts are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baran EJ (2016) Natural iron oxalates and their analogous synthetic counterparts: a review. Chem Erde-Geochem 76:449–460

    Article  Google Scholar 

  • Baran EJ, Monje PV (2008) Oxalate biominerals. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol 4. Biomineralization, from nature to applications. Wiley, Chichester, pp 219–254

    Google Scholar 

  • Chukanov NV (2014) Infrared spectra of mineral species, vol 1. Springer, Dordrecht

    Book  Google Scholar 

  • Chukanov NV, Belakovskii DI, Rastsvetaeva RK, Karimova OV, Zadov AE (2001) Novgorodovaite, Ca2(C2O4)Cl2 × 2H2O, a new mineral. Zapiski VMO 130(4):32–35 (in Russian)

    Google Scholar 

  • Clark RJH, Firth S (2002) Raman, infrared and force field studies of K2 12C2O4·H2O and K2 13C2O4·H2O in the solid state and in aqueous solution, and of (NH4)2 12C2O4·H2O and (NH4)2 13C2O4·H2O in the solid state. Spectrochim Acta 58A:1731–1746

    Article  Google Scholar 

  • Conti C, Casati M, Colombo Ch, Realini M, Brambilla L, Zerbi G (2014) Phase transformation of calcium oxalate dihydrate-monohydrate: effects of relative humidity and new spectroscopic data. Spectrochim Acta 128A:413–419

    Article  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York, pp 484–488

    Google Scholar 

  • CrysAlisPro (2014) Oxford Diffraction Ltd., Version 1.171.37.31 (release 14-01- 2014 CrysAlis171.NET)

  • D’Antonio MC, Palacios D, Coggiola L, Baran EJ (2007) Vibrational and electronic spectra of synthetic moolooite. Spectrochim Acta 68A:424–426

    Article  Google Scholar 

  • D’Antonio MC, Wladimirsky A, Palacios D, Coggiola L, González-Baró AC, Baran EJ, Mercader RC (2009) Spectroscopic investigation of the iron(II) and iron(III) oxalates. J Braz Chem Soc 20:445–450

    Article  Google Scholar 

  • D’Antonio MC, Mancilla N, Wladimirsky A, Palacios D, González-Baró AC, Baran EJ (2010) Vibrational spectra of magnesium oxalates. Vibrat Spectr 53:218–221

    Article  Google Scholar 

  • D’Antonio MC, Torres MM, Palacios D, González-Baró AC, Baran EJ (2015) Vibrational spectra of the two hydrate of strontium oxalate. Spectrochim Acta 137A:486–489

    Article  Google Scholar 

  • Deganello S, Piro OE (1981) The crystal structure of calcium oxalate monohydrate (whewellite). Neues Jahrb Miner Monatsh 1981:81–88

    Google Scholar 

  • Echigo T, Kimata M (2010) Crystal chemistry and genesis of organic minerals, a review of oxalate and polycyclic aromatic hydrocarbon minerals. Can Miner 48:1329–1358

    Article  Google Scholar 

  • Farrugia LJ (1997) ORTEP-3 for windows-a version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30:565

    Article  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Ann Rev Plant Physiol 56:41–71

    Google Scholar 

  • Hind AR, Bhargava SK, van Bronswijk W, Grocott SC, Eyer SL (1998) On the aqueous vibrational spectra of alkali metal oxalates. Appl Spectr 52:683–691

    Article  Google Scholar 

  • Jones FT, White LM (1946) The composition, optical and crystallographic properties of two calcium oxalate–chloride double salts. J Am Chem Soc 68:1339–1342

    Article  Google Scholar 

  • Mancilla N, Caliva V, D’Antonio MC, González-Baró AC, Baran EJ (2009a) Vibrational spectroscopic investigation of the hydrates of manganese(II) oxalates. J Raman Spectr 40:915–920

    Article  Google Scholar 

  • Mancilla N, D’Antonio MC, González-Baró AC, Baran EJ (2009b) Vibrational spectra of lead(II) oxalate. J Raman Spectr 40:2050–2052

    Article  Google Scholar 

  • Martell AE, Smith RM (eds) (1977) Critical stability constants, vol 3. Plenum Press, New York, pp 92–96

    Google Scholar 

  • Mills SJ, Christy AG (2006) The great barrier reef expedition 1928–1929: the crystal structure of and occurrence of weddellite, ideally CaC2O4·2.5H2O, from the Low Isles,Queensland. Miner Mag 80:399–406

    Article  Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909

    Article  Google Scholar 

  • Parsons S (2003) Introduction to twinning. Acta Crystallogr D59:1995–2003 and references therein

    Google Scholar 

  • Petrov I, Soptrajanov B (1975) Infrared spectrum of whewellite. Spectrochim Acta 31A:309–316

    Google Scholar 

  • Piro OE, Echeverría GA, González-Baró AC, Baran EJ (2016) Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite. Phys Chem Miner 43:287–300

    Article  Google Scholar 

  • Rastsvetaeva RK, Chukanov NV, Nekrasov YuV (2001) Crystal structure of novgorodovaite Ca2(C2O4)Cl2·2H2O. Doklady Chem 381:329–331

    Article  Google Scholar 

  • Serezhkin VN, Artem’eva MY, Serezhkina LB, Mikhailov YN (2005) Crystal chemical role of oxalate ions. Russ J Inorg Chem 50:1019–1030

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  • Shippey TA (1980) Vibrational studies of anhydrous lithium, sodium and potassium oxalates. J Mol Struct 67:223–233

    Article  Google Scholar 

  • Siebert H (1966) Anwendungen der Schwingunsspektrskopie in der Anorganischen Chemie. Springer, Berlin

    Book  Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz Mineralogical Tables. E. Schweitzbart'sche Verlagsbuchhandlung, Stuttgart, pp 717–721

  • Tazzoli V, Domeneghetti C (1980) The crystal structures of whewellite and weddellite: re-examination and comparison. Amer Mineral 65:327–334

    Google Scholar 

  • Torres MM, Palacios D, D’Antonio MC, González-Baró AC, Baran EJ (2016) Vibrational spectra of barium oxalate hemihydrate. Spectr Lett 49:238–240

    Article  Google Scholar 

  • Webb MA (1999) Cell-mediated crystallization of calcium oxalate in plants. Plant Cell 11:751–761

    Article  Google Scholar 

  • Yvon K, Jeitschko W, Parthé E (1977) LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns. J Appl Cryst 10:73–74

    Article  Google Scholar 

  • Zobel D, Luger P, Dreissig W, Koritsanszky T (1992) Charge density studies on small organic molecules around 20 K: oxalic acid dihydrate at 15 K and acetamide at 23 K. Acta Crystallogr B 48:837–848

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Referees for their thoroughly revisions that helped to improve our article. This work was supported by CONICET (PIP 11220130100651CO) and UNLP of Argentina. OEP, GAE and ACGB are Research Fellows of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Baran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piro, O.E., Echeverría, G.A., González-Baró, A.C. et al. Crystal structure and spectroscopic behavior of synthetic novgorodovaite Ca2(C2O4)Cl2·2H2O and its twinned triclinic heptahydrate analog. Phys Chem Minerals 45, 185–195 (2018). https://doi.org/10.1007/s00269-017-0907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0907-0

Keywords

Navigation