Physics and Chemistry of Minerals

, Volume 45, Issue 1, pp 69–76 | Cite as

[Pb2F2](SeO4): a heavier analogue of grandreefite, the first layered fluoride selenate

  • Dmitri O. Charkin
  • Igor V. Plokhikh
  • Anastasiya I. Zadoya
  • Sergey M. Kazakov
  • Alexander N. Zaloga
  • Michael S. Kozin
  • Wulf Depmeier
  • Oleg I. Siidra
Original Paper


Co-precipitation of PbF2 and PbSeO4 in weakly acidic media results in the formation of [Pb2F2](SeO4), the selenate analogue of the naturally occurring mineral grandreefite, [Pb2F2](SO4). The new compound is monoclinic, C2/c, a = 14.0784(2) Å, b = 4.6267(1) Å, c = 8.8628(1) Å, β = 108.98(1)°, V = 545.93(1) Å3. Its structure has been refined from powder data to R B = 1.55%. From thermal studies, it is established that the compound is stable in air up to about 300 °C, after which it gradually converts into a single phase with composition [Pb2O](SeO4), space group C2/m, and lattice parameters a = 14.0332(1) Å, b = 5.7532(1) Å, c = 7.2113(1) Å, β = 115.07(1)°, V = 527.37(1) Å3. It is the selenate analogue of lanarkite, [Pb2O](SO4), and phoenicochroite, [Pb2O](CrO4), and its crystal structure was refined to R B = 1.21%. The formation of a single decomposition product upon heating in air suggests that this happens by a thermal hydrolysis mechanism, i.e., Pb2F2SeO4 + H2O (vapor) → Pb2OSeO4 + 2HF↑. This relatively low-temperature process involves complete rearrangement of the crystal structure—from a 2D architecture featuring slabs [Pb2F2]2+ formed by fluorine-centered tetrahedra into a structure characterized by 1D motifs based on [OPb2]2+ chains of oxocentered tetrahedra. The comparative crystal chemistry of the obtained anion-centered structural architectures is discussed.


Grandreefite Selenate Fluoride Litharge Thermal decomposition Anion-centered tetrahedra 



This work was supported by St. Petersburg State University through the internal Grant Technical support by the X-Ray Diffraction Resource Centre of Saint-Petersburg State University is gratefully acknowledged.

Supplementary material

269_2017_903_MOESM1_ESM.cif (18 kb)
Supplementary material 1 (CIF 19 kb)
269_2017_903_MOESM2_ESM.cif (461 kb)
Supplementary material 2 (CIF 461 kb)


  1. Aurivillius B (1980) On the crystal structures of some lead fluorohalides composed of fluorite-like blocks and single halogen layers. Chem Scripta 15:153–164Google Scholar
  2. Balestracci R, Marechal L (1967) Etude structurale des sulfates basiques de terres rares et d’yttrium. Mater Res Bull 2:993–998CrossRefGoogle Scholar
  3. Belokoneva EL, Troneva EA, Dem’yanets LN, Duderov NG, Belov NV (1982) The crystal structure of synthetic fluoropyromorphite Pb5(PO4)3F. Sov Phys Crystallogr 27:476–477Google Scholar
  4. Bosselet F, Mentzen BF, Bouix J (1985) Étude de la solution Pb2O(S1-xWxO4) et structure cristalline de la varieté alpha du monooxodiplomb(II) tetraoxotungstate(VI) Pb2O(WO4) par diffraction X sur poudres. Mater Res Bull 20:1329–1337CrossRefGoogle Scholar
  5. Burakov SV, Zaloga AN, Semenkin ES, Yakimov IS (2015) Research on convergence of multipopulation binary- and real-coded genetic algorithms for solution of crystal structure from X-ray powder diffraction data. Cryst Res Technol 50:724–728CrossRefGoogle Scholar
  6. Charkin DO (2008) Modular approach as applied to the description, prediction, and targeted synthesis of bismuth oxohalides with layered structures. Russ J Inorg Chem 53:1977–1996CrossRefGoogle Scholar
  7. Charkin DO, Grischenko RO, Sadybekov AA, Goff RJ, Lightfoot P (2008) A new approach to synthesis of layered fluorites containing molecular anions: synthesis of Ln2O2CO3, K(LnO)CO3 and La2O2CrO4 via metathesis reactions. Inorg Chem 47:3065–3071CrossRefGoogle Scholar
  8. Charykova MV, Krivovichev VG (2017) Mineral systems and the thermodynamics of selenites and selenates in the oxidation zone of sulfide ores—a review. Mineral Petrol 111:121–134CrossRefGoogle Scholar
  9. Dickinson RG, Friauf JB (1924) The crystal structure of tetragonal lead monoxide. J Am Chem Soc 46:2457–2462CrossRefGoogle Scholar
  10. Effenberger H (1987) Crystal structure and chemical formula of schmiederite Pb2Cu2(OH)4(SeO3)(SeO4), with a comparison to linarite, PbCu(OH)2(SO4). Mineral Petrol 36:3–12CrossRefGoogle Scholar
  11. El haj Hassan F, Akbarzadeh H, Hashemifar SJ, Mokhtari A (2004) Structural and electronic properties of matlockite MFX (M=Sr, Ba, Pb; X=Cl, Br, I) compounds. J Phys Chem Solids 65:1871–1878CrossRefGoogle Scholar
  12. Fei H, Pham CH, Oliver SRJ (2012) Anion exchange of the cations layered material [Pb2F2]2+. J Am Chem Soc 134:10729–10732CrossRefGoogle Scholar
  13. Hajek B, Novotna N, Hradilova J (1979) Studies on thermal decompositions and infrared spectra of the rare-earth selenate octahydrates Ln2(SeO4)3·8H2O (Ln=Y, Tb, Dy, Ho, Er, Tm, Yb, Lu). J Less Common Met 66:121–136CrossRefGoogle Scholar
  14. Hartenbach I, Schleid T (2002) Serendipitous formation of single-crystalline Eu2O2(SO4). Z Anorg Allg Chem 628:2171CrossRefGoogle Scholar
  15. Hurlbut CS, Aristarain LF (1969) Olsacherite, Pb2(SO4)(SeO4), a new mineral from Bolivia. Am Mineral 54:1519–1527Google Scholar
  16. Jones RO, Rothschild S (1958) The lead oxide–lead sulfate and lead oxide–lead selenate systems. J Electrochem Soc 105:206–209CrossRefGoogle Scholar
  17. Kampf AR (1991) Grandreefite, Pb2F2SO4: crystal structure and relationship to the lanthanide oxide sulfates, Ln2O2SO4. Am Mineral 76:278–282Google Scholar
  18. Kampf AR (2001) The crystal structure of aravaipaite. Am Mineral 86:927–931CrossRefGoogle Scholar
  19. Kampf AR (2009) The crystal structure of Ba2F2(S6+O3S2−), a natural thiosulfate weathering product of old smelting slags at the Surrender Mill, Yorkshire, UK. Mineral Mag 73:251–255CrossRefGoogle Scholar
  20. Krivovichev SV, Mentré O, Siidra OI, Colmont M, Filatov SK (2013) Anion-centered tetrahedra in inorganic compounds. Chem Rev 113:6459–6535CrossRefGoogle Scholar
  21. Lide DR (ed) (1994–1995) CRC Handbook of chemistry and physics. 75th edn. CRC Press Inc., Boca Raton, pp 4–69Google Scholar
  22. Lide DR (ed) (2001) CRC Handbook of chemistry and physics. 82nd edn. CRC Press Inc., Boca Raton, pp 8-108–8-112Google Scholar
  23. Matsubara S, Mouri T, Miyawaki R, Yokoyama K, Nakahara M (2008) Munakataite, a new mineral from the Kato mine, Fukuoka, Japan. J Mineral Petrol Sci 103:327–332CrossRefGoogle Scholar
  24. Mentzen BF, Latrach A, Bouix J, Hewat AW (1984) The crystal structures of PbO·PbXO4 (X=S, Cr, Mo) at 5 K by neutron powder profile refinement. Mater Res Bull 19:549–554CrossRefGoogle Scholar
  25. Moore PB, Kampf AR, Sen Gupta PK (2000) The crystal structure of philolithite, a trellis-like open framework based on cubic closest-packing of anions. Am Mineral 85:810–816CrossRefGoogle Scholar
  26. Pasero M, Perchiazzi N (1996) Crystal structure refinement of matlockite. Mineral Mag 60:833–836CrossRefGoogle Scholar
  27. Pasero M, Rotiroti N (2003) The crystal structure of molybdomenite, PbSeO3. Neues Jahrb Miner Monatshefte 2003:145–152CrossRefGoogle Scholar
  28. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740CrossRefGoogle Scholar
  29. Petriček V, Dusek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352Google Scholar
  30. Rogow DL, Zapeda G, Swanson CH, Fan X, Campana CF, Oliver AG, Oliver SRJ (2007) A metal-organic framework containing cationic inorganic layers Pb2F2[(C2H4(SO3)2]. Chem Mater 19:4658–4662CrossRefGoogle Scholar
  31. Sahl K (1970) Zur Kristallstruktur von Lanarkit, Pb2O(SO4). Z Kristallogr 132:99–117CrossRefGoogle Scholar
  32. Shimoni-Livny L, Glusker JP, Bock CW (1998) Lone pair functionality in divalent lead compounds. Inorg Chem 37:1853–1867CrossRefGoogle Scholar
  33. Shuvalov RR, Vergasova LP, Semenova TF, Filatov SK, Krivovichev SV, Siidra OI, Rudashevsky NS (2013) Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: description and crystal structure. Am Mineral 98:463–469CrossRefGoogle Scholar
  34. Siidra OI, Krivovichev SV, Filatov SK (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Z Kristallogr 223:114–125CrossRefGoogle Scholar
  35. Siidra OI, Krivovichev SV, Turner RW, Rumsey MS, Spratt J (2013a) Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures. Crystal structure of hereroite, [Pb32O20(O,□)](AsO4)2((Si, As, V, Mo)O4)2Cl10. Am Mineral 98:248–255CrossRefGoogle Scholar
  36. Siidra OI, Krivovichev SV, Turner RW, Rumsey MS, Spratt J (2013b) Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures. II. Crystal structure of vladkrivovichevite, [Pb32O18][Pb4Mn2O]Cl14(BO3)8·2H2O. Am Mineral 98:256–261CrossRefGoogle Scholar
  37. Siidra OI, Zinyakhina DO, Zadoya AI, Krivovichev SV, Turner RW (2013c) Synthesis and modular structural architectures of mineralogically inspired novel complex Pb oxyhalides. Inorg Chem 52:12799–12805CrossRefGoogle Scholar
  38. Siidra OI, Gogolin M, Lukina EA, Kabbour H, Bubnova RS, Mentre O, Agakhanov AA, Krivovichev SV, Colmont M, Gesing T (2015) Structural evolution from 0D Units to 3D frameworks in Pb oxyhalides: unexpected strongly corrugated layers in Pb7O6Br2. Inorg Chem 54:11550–11556CrossRefGoogle Scholar
  39. Siidra OI, Kabbour H, Mentré O, Nazarchuk EV, Kegler P, Zinyakhina DO, Colmont M, Depmeier W (2016) Lead oxychloride borates obtained under extreme conditions. Inorg Chem 55:9077–9084CrossRefGoogle Scholar
  40. Turner RW, Siidra OI, Krivovichev SV, Stanley CJ, Spratt J (2012) Rumseyite, [Pb2OF]Cl, the first naturally occurring fluoroxychloride mineral with the parent crystal structure for layered lead oxychlorides. Mineral Mag 76:1247–1255CrossRefGoogle Scholar
  41. Weil M, Kubel F (2000) Präparation und Strukturanalyse der Verbindungen Ba2Pb4F10Br 2-xIx (x = 0–2) mit verwandten kristallchemischen Motiven aus der Fluorit-und Matlockitstruktur. Z Anorg Allg Chem 626:22481–24861Google Scholar
  42. Williams SA, McLean J, Anthony JW (1970) A study of phoenicochroite-its structure and properties. Am Mineral 55:784–792Google Scholar
  43. Zhukov SG, Yatsenko A, Chernyshev VV, Trunov V, Tserkovnaya E, Antson O, Hölsä J, Baules P, Schenk H (1997) Structural study of lanthanum oxysulfate (LaO)2SO4. Mat Res Bull 32:43–50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dmitri O. Charkin
    • 1
  • Igor V. Plokhikh
    • 1
  • Anastasiya I. Zadoya
    • 2
  • Sergey M. Kazakov
    • 1
  • Alexander N. Zaloga
    • 3
  • Michael S. Kozin
    • 2
  • Wulf Depmeier
    • 4
  • Oleg I. Siidra
    • 2
  1. 1.Inorganic Chemistry Division, Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Department of CrystallographySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia
  4. 4.Institut für Geowissenschaften der Universität KielKielGermany

Personalised recommendations