Advertisement

Physics and Chemistry of Minerals

, Volume 45, Issue 1, pp 59–68 | Cite as

The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

  • Stella Chariton
  • Valerio Cerantola
  • Leyla Ismailova
  • Elena Bykova
  • Maxim Bykov
  • Ilya Kupenko
  • Catherine McCammon
  • Leonid Dubrovinsky
Original Paper
  • 398 Downloads

Abstract

Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure (\({\text{R}}\bar{3}{\text{c}}\)) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K′ = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

Keywords

Spherocobaltite CoCO3 High pressure X-ray diffraction Raman spectroscopy Transition metal carbonates 

Notes

Acknowledgements

We thank the European Synchrotron Radiation Facility for provision of synchrotron radiation (ID09A) and Michael Hanfland for additional technical assistance. We also thank Tiziana Boffa-Ballaran for help with data analysis software and Alexander Kurnosov for the gas loading of diamond anvil cells. The project was supported by funds from the German Science Foundation (DFG) through the CarboPaT Research Unit FOR2125 (Mc3/20, Du393/9), the German Federal Ministry for Education (BMBF), and the German Academic Exchange Service (DAAD).

References

  1. Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, YarntonGoogle Scholar
  2. Angel JR, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr Cryst Mat 229:405–419Google Scholar
  3. Badro J, Brodholt JP, Piet H, Siebert J, Ryerson FJ (2015) Core formation and core composition from coupled geochemical and geophysical constraints. Proc Natl Acad Sci 112(40):12310–12314CrossRefGoogle Scholar
  4. Barton IF, Yang H, Barton MD (2014) The mineralogy, geochemistry, and metallurgy of cobalt in the rhombohedral carbonates. Can Mineral 52:653–670CrossRefGoogle Scholar
  5. Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in deep Earth. PNAS 108:5184–5187CrossRefGoogle Scholar
  6. Boulard E, Pan D, Galli G, Liu Z, Mao W (2014) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. doi: 10.1038/ncomms7311 Google Scholar
  7. Boulard E, Goncharov AF, Blanchard M, Mao WL (2015) Pressure-induced phase transition in MnCO3 and its implications on the deep carbon cycle. J Geophys Res Solid Earth. doi: 10.1002/2015JB011901 Google Scholar
  8. Bridgman PW (1939) The high pressure behavior of miscellaneous minerals. Am J Sci 237:7–18CrossRefGoogle Scholar
  9. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. Carr MH, Turekian KK (1960) The geochemistry of cobalt. Geochim Cosmochim Acta 23:9–60CrossRefGoogle Scholar
  11. Cerantola V, McCammon C, Kupenko I, Kantor I, Marini C, Wilke M, Ismailova L, Solopova N, Chumakov AI, Pascarelli S, Dubrovinsky L (2015) High-pressure spectroscopic study of siderite (FeCO3) with focus on spin crossover. Am Mineral 100:2670–2681CrossRefGoogle Scholar
  12. Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr 156:233–243Google Scholar
  13. Farfan GA, Boulard E, Wang S, Mao WL (2013) Bonding and electronic changes in rhodochrosite at high pressure. Am Mineral 98:1817–1823CrossRefGoogle Scholar
  14. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854CrossRefGoogle Scholar
  15. Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. PNAS 104:9182–9186CrossRefGoogle Scholar
  16. Fiquet G, Guyot F, Itie JP (1994) High-pressure X-ray diffraction study of carbonates—MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral 79:15–23Google Scholar
  17. French BM (1971) Stability relations of siderite (FeCO3) in the system Fe–C–O. Am J Sci 27:37–78CrossRefGoogle Scholar
  18. Frost DJ, Poe BT, Tronnes RG, Liebske C, Duba A, Rubie DC (2004) A new large-volume multianvil system. Phys Earth Planet Inter 143–144:507–514CrossRefGoogle Scholar
  19. Gao J, Zhu F, Lai XJ, Huang R, Qin S, Chen DL, Liu J, Zheng LR, Wu X (2014) Compressibility of natural smithsonite ZnCO3 up to 50 GPa. High Press Res 34:89–99CrossRefGoogle Scholar
  20. Goldsmith JR, Northrop DA (1965) Subsolidus phase relations in the systems CaCO3–MgCO3–CoCO3 and CaCO3–MgCO3–NiCO3. J Geol 73:817–829CrossRefGoogle Scholar
  21. Gonzalez-Platas J, Alvaro M, Nestola F, Angel RJ (2016) EosFit7-GUI: a new GUI tool for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382CrossRefGoogle Scholar
  22. Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63CrossRefGoogle Scholar
  23. Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic rocks. Proc Lunar Planet Sci Conf 10:2031–2050Google Scholar
  24. Kantor I, Prakapenka V, Kantor A, Dera P, Kurnosov A, Sinogeikin S, Dubrovinskaia N, Dubrovinsky L (2012) BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum. doi: 10.1063/1.4768541 Google Scholar
  25. Katsura T, Tsuchida Y, Ito E, Yagi T, Utsumi W, Akimoto S (1991) Stability of magnesite under the lower mantle conditions. Proc Japan Acad Ser B 67:57–60CrossRefGoogle Scholar
  26. Kupenko I, Dubrovinsky L, Dubrovinskaia N, McCammon C, Glazyrin K, Bykova E, Boffa-Ballaran T, Sinmyo R, Chumakov A, Potapkin V, Kantor A, Rüffer R, Hanfland M, Crichton W, Merlini M (2012) Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Rev Sci Instrum. doi: 10.1063/1.4772458 Google Scholar
  27. Kurnosov A, Kantor I, Boffa-Ballaran T, Lindhardt S, Dubrovisnky L, Kuznetsov A, Zehnder BH (2008) A novel gas-loading system for mechanically closing of various types of diamond anvil cells. Rev Sci Instrum. doi: 10.1063/1.2902506 Google Scholar
  28. Larson AC, von Dreele RB (1985) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR B6-748Google Scholar
  29. Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. GRL. doi: 10.1029/2009GL039652 Google Scholar
  30. Lavina B, Dera P, Downs RT, Tschauner O, Yang W, Shebanova O, Shen G (2010a) Effect of dilution on the spin pairing transition in rhombohedral carbonates. High Press Res 30:224–229CrossRefGoogle Scholar
  31. Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shenand G, Schiferl D (2010b) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B. doi: 10.1103/PhysRevB.82.064110 Google Scholar
  32. Lin JF, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591CrossRefGoogle Scholar
  33. Liu J, Lin J, Prakapenka VB (2015) High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep. doi: 10.1038/srep07640 Google Scholar
  34. Liu J, Caracas R, Fan D, Bobocioiu E, Zhang D, Mao WL (2016) High-pressure compressibility and vibrational properties of (Ca, Mn)CO3. Am Min 101:2723–2730CrossRefGoogle Scholar
  35. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure Gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–7676CrossRefGoogle Scholar
  36. Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. GRL. doi: 10.1029/2011GL049519 Google Scholar
  37. Mattila A, Rylkkänen T, Rueff JP, Huotari S, Vankó G, Hanfland M, Lehtinen M, Hämäläinen K (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. J Phys Condens Matter. doi: 10.1088/0953-8984/19/38/386206 Google Scholar
  38. Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L (2012a) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. PNAS 109:13509–13514CrossRefGoogle Scholar
  39. Merlini M, Hanfland M, Crichton WA (2012b) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. EPSL 333–334:265–271CrossRefGoogle Scholar
  40. Merlini M, Hanfland M, Gemmi M (2015) The MnCO3-II high-pressure polymorph of rhodochrosite. Am Mineral 100:2625–2629CrossRefGoogle Scholar
  41. Minch R, Seoung DH, Ehm L, Winkler B, Knorr K, Peters L, Borkowski LA, Parise JB, Lee Y, Dubrovinsky L, Depmeier W (2010) High-pressure behavior of otavite (CdCO3). J Alloys Compd 508:251–257CrossRefGoogle Scholar
  42. Ono S (2007) High-pressure phase transformation in MnCO3: a synchrotron XRD study. Mineral Mag 71:105–111CrossRefGoogle Scholar
  43. Pertlik F (1986) Structures of hydrothermally synthesized cobalt (II) carbonate and nickel (II) carbonate. Acta Cryst C 42:4–5CrossRefGoogle Scholar
  44. Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. Rev Mineral 11:1–47Google Scholar
  45. Rutt HN, Nicola JH (1974) Raman spectra of carbonates of calcite type. J Phys C Solid State Phys 7:4522–4528CrossRefGoogle Scholar
  46. Santillán J, Williams Q (2004) A high-pressure and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2—dolomite. Phys Earth Planet Inter 143–144:291–304CrossRefGoogle Scholar
  47. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925CrossRefGoogle Scholar
  48. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  49. Shi W, Fleet M, Shieh SR (2012) High-pressure phase transitions in Ca-Mn carbonates (Ca, Mn)CO3 studied by Raman spectroscopy. Am Mineral 97:999–1001CrossRefGoogle Scholar
  50. Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002CrossRefGoogle Scholar
  51. Taran MN, Langer K, Koch-Mueller M (2008) Pressure dependence of color of natural uvarovite: the barochromic effect. Phys Chem Miner 35:175–177CrossRefGoogle Scholar
  52. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–182CrossRefGoogle Scholar
  53. Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. Rev Mineral 11:265–299Google Scholar
  54. Vizgirda J, Ahrens TJ (1982) Shock compression of aragonite and implications for the equation of states of carbonates. J Geophys Res 87:4747–4758CrossRefGoogle Scholar
  55. Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Bayerisches GeoinstitutUniversitat BayreuthBayreuthGermany
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Deutsches Electronen SynchrotronHamburgGermany
  5. 5.Institute for MineralogyUniversitat MünsterMünsterGermany

Personalised recommendations