Physics and Chemistry of Minerals

, Volume 45, Issue 1, pp 39–50 | Cite as

New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb-analogue of auriacusite

  • Sergey M. Aksenov
  • Nikita V. Chukanov
  • Jörg Göttlicher
  • Steffen Möckel
  • Dmitriy Varlamov
  • Konstantin V. Van
  • Ramiza K. Rastsvetaeva
Original Paper


Agardite-(Ce) from Clara Mine, Schwarzwald, Germany, has been investigated by means of electron microprobe analysis, single-crystal X-ray analysis, XANES spectroscopy and IR spectroscopy. Hexagonal unit-cell parameters are: a = 13.598(6), c = 5.954(3) Å; V = 953.5(2) Å3; space group P63/m. The structure has been solved and refined to final R 1 = 3.87%, wR 2 = 5.02 for 786 I > 3σ(I). Hydrogen atoms have been localized. The crystal-chemical formula is (Z = 2): A(1)(Ce0.82Ca0.14Sr0.04)Σ1.00 A(2)(Ca0.03Ce0.02)Σ0.05 [Cu5.75(Fe3+, Mn)0.20]Σ5.95 [ T(1)(AsO4) 2.96 T(2) (SbO4)0.04)]Σ3.00 (OH)5.96O0.04·3H2O. Hydrogen bonding in agardite-series minerals has been characterized for the first time. IR spectra of agardite-(Ce) and agardite-(Nd) from Lavrion used for comparison, as well as structural data indicate the presence of isolated H+ cations that do not form strong covalent bonds with coordinating O atoms. Agardite-(Ce) from Clara Mine forms epitaxial growths with the Sb-analogue of auriacusite. The latter mineral was characterized by EDS analyses; its typical empirical formulae are \({\text{Ca}}_{0.0 6} {\text{Ce}}_{0.0 4} {\text{Fe}}^{ 3+ }{}_{ 1.0 6} {\text{Cu}}_{0. 8 9}\)[(SbO4)0.58(AsO4)0.38(SiO4)0.04]Σ1.00(O,OH) and \({\text{Ca}}_{0.0 7 5} {\text{Ce}}_{0.0 4} {\text{Fe}}^{ 3+ }{}_{0. 9 3} {\text{Cu}}_{0. 9 7}\)[(SbO4)0.59(AsO4)0.35(SiO4)0.06]Σ1.00(O,OH). The formation of uniaxial growths of the Sb-analogue of auriacusite and agardite-(Ce) is caused by the close values of their c parameters (for auriacusite s.s. c  =  5.9501(5) Å). Three-valence state of iron and five-valence of antimony in both minerals has been validated by means of Fe K- and Sb L 2,3-edge XANES spectroscopy.


Agardite-(Ce) Agardite-(Nd) Crystal structure Hydrogen bonding IR spectrum Clara Mine Lavrion 



We are grateful to Dr. Jiří Sejkora and Dr. Stuart Mills for valuable comments. This work was financially supported by the Russian Foundation for Basic Research, Grant No. 17-05-00145 (WDS data), Foundation of the President of the Russian Federation, Grant No. MK-8033.2016.5 (X-ray analysis), as well as the Russian Scientific Foundation, Grant 14-17-00048 (investigation of physical properties).

Supplementary material

269_2017_899_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 kb)


  1. Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
  2. Arnold DW, Cangshan Xu, Neumark DM (1995) Spectroscopy of the transition state: elementary reactions of the hydroxyl radical studied by photoelectron spectroscopy of O(H2O) and H3O2 . J Chem Phys 102:6088–6099CrossRefGoogle Scholar
  3. Aruga A, Nakai A (1985) Structure of Ca-rich agardite, (Ca0.40Y0.31Fe0.09Ce0.06La0.04Nd0.01)Cu6.19[(AsO4)2.42(HAsO4)0.49](OH)6.38·3H2O. Acta Crystallogr C 41:161–163CrossRefGoogle Scholar
  4. Brandenburg K, Putz H (2005) DIAMOND version 3. Crystal Impact GbR, BonnGoogle Scholar
  5. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B 47:192–197CrossRefGoogle Scholar
  6. Brown ID (2002) The chemical bond in inorganic chemistry. The bond valence model. Oxford University Press, OxfordGoogle Scholar
  7. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B 41:244–247CrossRefGoogle Scholar
  8. Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, HeidelbergCrossRefGoogle Scholar
  9. Chukanov NV, Pekov IV IV (2012) Infrared spectroscopy of acid salts. I. Minerals of the class of silicates. Zapiski RMO (Proc Russ Miner Soc) 141(3):129–143 (in Russian) Google Scholar
  10. Fehr T, Hochleitner R (1984) Agardit-La: Ein neues Mineral von Lavrion, Griechenland. Lapis 1:22–37Google Scholar
  11. Hess H (1983) Die Kristallstruktur des Chlorotils, SECu6(AsO4)3(OH)6·3H2O (SE = seltene Erdmetalle). N Jb Mineral Mh 1983:385–392 (in German) Google Scholar
  12. Huang X, Braams BJ, Carter S, Bowman JM (2004) Quantum calculations of vibrational energies of H3O2 on an ab initio potential. J Am Chem Soc 126:5042–5043CrossRefGoogle Scholar
  13. Ibers JA, Hamilton WC (eds) (1974) International tables for X-ray crystallography, vol IV. The Kynoch Press, BirminghamGoogle Scholar
  14. Kaledin M, Moffitt JM, Clark CR, Rizvi F (2009) Ab initio molecular dynamics simulations of the infrared spectra of H3O2 and D3O2 . J Chem Theory Comput 5:1328–1336CrossRefGoogle Scholar
  15. Miletich R, Zemann J, Nowak M (1997) Reversible hydration in synthetic mixite, BiCu6(OH)6(AsO4)3·nH2O (n ≤ 3): hydration kinetics and crystal chemistry. Phys Chem Miner 24:411–422CrossRefGoogle Scholar
  16. Mills SJ, Christy AG, Chen EC-C, Raudsepp M (2009) Revised values of the bond valence parameters for [6]Sb(V)–O and [3–11]Sb(III)–O. Z Kristallogr 224:423–431CrossRefGoogle Scholar
  17. Mills SJ, Kampf AR, Poirier G, Raudsepp M, Steele IM (2010) Auriacusite, Fe3+Cu2+AsO4O, the first M 3+ member of the olivenite group, from the Black Pine mine, Montana, USA. Mineral Petrol 99:113–120CrossRefGoogle Scholar
  18. Mills SJ, Etschmann B, Kampf AR, Poirier G, Newville M (2014) Sb5+ and Sb3+ substitution in segnitite: a new sink for As and Sb in the environment and implications for acid mine drainage. Am Mineral 99:1355–1359CrossRefGoogle Scholar
  19. Morrison SM, Domanik KJ, Origlieri MJ, Downs RT (2013) Agardite-(Y), \({\text{Cu}}^{ 2+ }{}_{6}{\rm{Y}} {\text{(AsO}}_{4})_{3}{\rm (OH)}_{6}\cdot 3{\rm H}_{2}{\rm{O}}\). Acta Crystallogr E 69:i61–i62CrossRefGoogle Scholar
  20. Morrison SM, Domanik KJ, Yang H, Downs RT (2014) Petersite- (Ce), IMA 2014-002. CNMNC Newsletter No. 20, June 2014, p 555. Mineral Mag 78:549–558Google Scholar
  21. Olmi F, Sabelli C, Trosti Ferroni R (1991) A contribution to the crystal chemistry of mixite group minerals from Sardinia (Italy). Neues Jahrbuch für Mineralogie Monatshefte 11:487–499Google Scholar
  22. Olmi F, Sabelli C, Trosti-Ferroni R (1995a) The crystal structure of sabelliite. Eur J Mineral 7:1331–1338CrossRefGoogle Scholar
  23. Olmi F, Santucci A, Trosti-Ferroni R (1995b) Sabelliite, a new copper–zinc arsenate–antimonate mineral from Sardinia, Italy. Eur J Mineral 7:1325–1330CrossRefGoogle Scholar
  24. Padron-Navarta JA, Carrido CJ, Sanchez-Navas A, Tommasi A, Lopez Sanchez-Vizcaino V, Gomez-Pugnaire MT, Hussain SS (2008) Oriented growth of garnet by topotactic reactions and epitaxy in high-pressure, mafic garnet granulite formed by dehydration melting of metastable hornblende-gabbronorite (Jijal Complex, Kohistan Complex, north Pakistan). J. Metamorph Geol 26:855–870CrossRefGoogle Scholar
  25. Pekov IV, Chukanov NV, Zadov AE, Voudouris P, Magganas A, Katerinopoulos A (2011) Agardite-(Nd) NdCu6(AsO4)3(OH)6·3H2O from the Hilarion Mine, Lavrion, Greece: mineral description and chemical relations with other members of the agardite–zálesiite solid-solution system. J Geosci 57:249–255Google Scholar
  26. Petřiček V, Dušek M, Palatinus L (2006) Jana2006. Structure determination software programs. Institute of Physics, PrahaGoogle Scholar
  27. Rastsvetaeva RK, Aksenov SM, Taroev VK (2010) Crystal structures of endotaxic phases in europium potassium silicate having a pellyite unit cell. Crystallogr Rep 55:1041–1049CrossRefGoogle Scholar
  28. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  29. Schmidt JE, Xie D, Davis ME (2015) High silica, heulandite-type zeolites prepared by direct synthesis and topotactic condensation. J Mater Chem A 3:12890–12897CrossRefGoogle Scholar
  30. Sejkora J, Řídkošil T, Šrein V (1999) Zálesíite, a new mineral of the mixite group, from Zálesí, Rychlebské hory Mts., Czech Republic. N Jb Mineral Abh 175:105–124Google Scholar
  31. Sejkora J, Novotný P, Novák M, Šrein V, Berlepsch P (2005) Calciopetersite from Domašov nad Bystricí, northern Moravia, Czech Republic, a new mineral species of the mixite group. Can Mineral 43:1393–1400CrossRefGoogle Scholar
  32. Sokolova EV, Abdu Y, Hawthorne FC, Genovese A, Camara F, Khomyakov AP (2015) From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of betalomonosovite, a group-IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula, Russia. Can Mineral 53:401–428CrossRefGoogle Scholar
  33. Thompson JBJ (1978) Biopyriboles and polysomatic series. Am Mineral 63:239–249Google Scholar
  34. Veblen DR (1992) Electron microscopy applied to nonstoichiometry, polysomatism, and replacement reactions in minerals. Rev Mineral 21:181–230Google Scholar
  35. Walenta K, Theye T (2004) Agardit-(Ce) von der Grube Clara im mittleren Schwarzwald. Aufschluss 55:17–23Google Scholar
  36. Walenta K, Theye T (2005) Plumboagardite, a new mineral of the mixite group from an occurrence in the Southern Black Forest, Germany. Neues Jahrbuch für Mineralogie Abhandlungen 181:219–224CrossRefGoogle Scholar
  37. Wise WS (1978) Parnauite and goudeyite, two new copper arsenate minerals from the Majuba Hill Mine, Pershing County, Nevada. Am Miner 63:704–708Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sergey M. Aksenov
    • 1
    • 2
    • 3
  • Nikita V. Chukanov
    • 4
  • Jörg Göttlicher
    • 5
  • Steffen Möckel
    • 6
  • Dmitriy Varlamov
    • 4
    • 7
  • Konstantin V. Van
    • 7
  • Ramiza K. Rastsvetaeva
    • 3
  1. 1.Faculty of GeologySt Petersburg State UniversitySt PetersburgRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.FSRC “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussia
  5. 5.Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation (IPS)Eggenstein-LeopoldshafenGermany
  6. 6.Alpha-Geophysik in SachsenBurkersdorfGermany
  7. 7.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations