Physics and Chemistry of Minerals

, Volume 44, Issue 7, pp 535–535 | Cite as

Erratum to: Modeling defects and plasticity in MgSiO3 post-perovskite: Part 3—Screw and edge [001] dislocations

  • Alexandra M. Goryaeva
  • Philippe Carrez
  • Patrick CordierEmail author
Open Access

Erratum to: Phys Chem Minerals DOI 10.1007/s00269-017-0879-0

In the original publication of the article, Eqs. (2) and (3) are provided in the incorrect form. The corresponding correct equations are provided below.

Equation 2

The resulting force acting on the dislocation line is given by the Peach–Koehler equation (Peach and Koehler 1950):
$$ {\textbf{F}}_{\textbf{l}} = (\varvec{\upsigma}\cdot {\textbf{b}}) \times {\textbf{l}}, $$
where F l is a force acting on a unit length of a dislocation line l; σ is the applied stress tensor resulting from straining the cell and b is the Burgers vector.

Equation 3

Accounting for a change in dissociation width R in various metastable configurations with respect to that in the stable dislocation core, the associated energy increase ∆W should scale with the following expression (Hirth and Lothe 1982):
$$\begin{aligned} \frac{\Delta W}{L} &=& \gamma \left| {R_{\text{SF}} - R_{\text{SF}}^{\text{eq}} } \right| - \frac{\mu }{2\pi }({\mathbf{b}}_{{\mathbf{1}}} \cdot {\mathbf{l}}_{{\mathbf{1}}} )({\mathbf{b}}_{{\mathbf{2}}} \cdot {\mathbf{l}}_{{\mathbf{2}}} )\ln \frac{{R_{\text{SF}} }}{{R_{\text{SF}}^{\text{eq}} }}\nonumber\\ &&- \frac{\mu }{2\pi (1 - \nu )}[({\mathbf{b}}_{{\mathbf{1}}} \times {\mathbf{l}}_{{\mathbf{1}}} ) \cdot ({\mathbf{b}}_{{\mathbf{2}}} \times {\mathbf{l}}_{{\mathbf{2}}} )]\ln \frac{{R_{\text{SF}} }}{{R_{\text{SF}}^{\text{eq}} }}, \end{aligned}$$
where ∆W/L is the increase in energy per dislocation unit length with respect to the equilibrium configuration characterized by a dissociation width \( R_{\text{SF}}^{\text{eq}} ; \) R SF is the extension of a perfect stacking fault between the two partials; µ is the anisotropic shear modulus; ν is the Poisson ratio; b i and l i are the partial Burgers vectors and the dislocation line vectors, respectively.

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.UMET-Unité Matériaux et TransformationsCNRS, INRA, ENSCL, UMR 8207, Univ. LilleLilleFrance

Personalised recommendations