Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 7, pp 535–535 | Cite as

Erratum to: Modeling defects and plasticity in MgSiO3 post-perovskite: Part 3—Screw and edge [001] dislocations

  • Alexandra M. Goryaeva
  • Philippe Carrez
  • Patrick CordierEmail author
Open Access
Erratum
  • 333 Downloads

Erratum to: Phys Chem Minerals DOI 10.1007/s00269-017-0879-0

In the original publication of the article, Eqs. (2) and (3) are provided in the incorrect form. The corresponding correct equations are provided below.

Equation 2

The resulting force acting on the dislocation line is given by the Peach–Koehler equation (Peach and Koehler 1950):
$$ {\textbf{F}}_{\textbf{l}} = (\varvec{\upsigma}\cdot {\textbf{b}}) \times {\textbf{l}}, $$
(2)
where F l is a force acting on a unit length of a dislocation line l; σ is the applied stress tensor resulting from straining the cell and b is the Burgers vector.

Equation 3

Accounting for a change in dissociation width R in various metastable configurations with respect to that in the stable dislocation core, the associated energy increase ∆W should scale with the following expression (Hirth and Lothe 1982):
$$\begin{aligned} \frac{\Delta W}{L} &=& \gamma \left| {R_{\text{SF}} - R_{\text{SF}}^{\text{eq}} } \right| - \frac{\mu }{2\pi }({\mathbf{b}}_{{\mathbf{1}}} \cdot {\mathbf{l}}_{{\mathbf{1}}} )({\mathbf{b}}_{{\mathbf{2}}} \cdot {\mathbf{l}}_{{\mathbf{2}}} )\ln \frac{{R_{\text{SF}} }}{{R_{\text{SF}}^{\text{eq}} }}\nonumber\\ &&- \frac{\mu }{2\pi (1 - \nu )}[({\mathbf{b}}_{{\mathbf{1}}} \times {\mathbf{l}}_{{\mathbf{1}}} ) \cdot ({\mathbf{b}}_{{\mathbf{2}}} \times {\mathbf{l}}_{{\mathbf{2}}} )]\ln \frac{{R_{\text{SF}} }}{{R_{\text{SF}}^{\text{eq}} }}, \end{aligned}$$
(3)
where ∆W/L is the increase in energy per dislocation unit length with respect to the equilibrium configuration characterized by a dissociation width \( R_{\text{SF}}^{\text{eq}} ; \) R SF is the extension of a perfect stacking fault between the two partials; µ is the anisotropic shear modulus; ν is the Poisson ratio; b i and l i are the partial Burgers vectors and the dislocation line vectors, respectively.

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.UMET-Unité Matériaux et TransformationsCNRS, INRA, ENSCL, UMR 8207, Univ. LilleLilleFrance

Personalised recommendations