Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 9, pp 627–637 | Cite as

Anisotropic viscoelastic properties of quartz and quartzite in the vicinity of the αβ phase transition

  • Steffen Klumbach
  • Frank R. Schilling
Original Paper
  • 193 Downloads

Abstract

In this study we performed high-temperature, dynamic (i.e. sinusoidal), three-point bending experiments of quartz single crystals and quartzite samples within the frequency range of seismic surveys (i.e. 0.1–20 Hz). At constant temperature close to the αβ phase transition we observed a unique complex elastic behaviour of both quartz and quartzite. We find a frequency dependence of the complex Young’s modulus of α-quartz, including a dissipation maximum at ≈1 Hz supposedly related to the formation and variation of Dauphiné twin domains. Based on our experimental results for different crystallographic directions and additional modelling, we are able to describe the complex Young’s modulus of quartz at its αβ phase transition in a 3D diagram. We derive a frequency-dependent elasticity tensor, using a three-element equivalent circuit, composed of two springs E 1 and E 2 as well as a dashpot η. E 1 and η are connected parallel to each other, E 2 is added in series. Compliance coefficients yield (S 11) E 1 = 572 GPa, E 2 = 70.0 GPa, η = 64.6 GPa·s, (S 33) E 1 = 127 GPa, E 2 = 52.1 GPa, η = 22.9 GPa·s, (S 44) E 1 = 204 GPa, E 2 = 37.5 GPa, η = 26.4 GPa·s, (S 12) E 1 = 612 GPa, E 2 = 106.7 GPa, η = 78.5 GPa·s, (S 13) E 1 = 1546 GPa, E 2 = 284 GPa, η = 200 GPa·s; S 14 ≈−0.0024 GPa-1. We use the derived direction-dependent coefficients to predict the frequency-dependent complex elastic properties of isotropic polycrystalline quartz. These predictions agree well with the experimental results of the investigated quartzite. Finally, we explore the potential of using the anomalous frequency-dependent complex elastic properties of quartz at the αβ phase transition that we observed as an in situ temperature probe for seismic studies of the Earth’s continental crust.

Keywords

Quartz Transition Stiffness Viscoelasticity Anisotropy 

Notes

Acknowledgements

We thank Dr. Martin Herrenknecht for financial support throughout years that helped us to carry out the research leading to this paper. During his employment at KIT, Steffen Klumbach received funding from a Geotechnologies grant of the German Federal Ministry of Education and Research (support code: 03G0763A), which is greatly acknowledged. Currently, Steffen Klumbach is supported by a grant of the German Research Foundation (support code: DFG Ke 501/11-1) and Prof. Dr. Hans Keppler at BGI. We welcome the discussions with Dr. Birgit I. Müller and Dr. Christian Scheffzük during this study. Further, we thank Larissa F. Dobrzhinetskaya, two anonymous reviewers, and Eleonore Jennings for their constructive comments to improve the manuscript.

References

  1. Aslanyan TA, Levanyuk AP (1979) On the possibility of the incommensurate phase near the α–β transition point in quartz. Solid State Commun 31:547–550. doi: 10.1016/0038-1098(79)90250-3 CrossRefGoogle Scholar
  2. Bragg WFRS, Gibbs RE (1925) The structure of α and β and quartz. Proc R Soc Lond A 109:405–427. doi: 10.1098/rspa.1925.0135 CrossRefGoogle Scholar
  3. Brown CS, Kell RC, Thomas LA, Wooster N, Wooster WA (1952) The growth and properties of large crystals of synthetic quartz. Mineralog Mag 29:858–874. doi: 10.1180/minmag.1952.029.217.03 CrossRefGoogle Scholar
  4. Dolino G (1990) The transitions of quartz: a century of research on displacive phase transitions. Phase Transit 21:59–72. doi: 10.1080/01411599008206882 CrossRefGoogle Scholar
  5. Fielitz K (1971) Elastic wave velocities in different rocks at high pressure and temperature up to 750 °C. Z Geophys 37:943–956Google Scholar
  6. Fielitz K (1976) Compressional and shear wave velocities as a function of temperature in rocks at high pressure. In: Giese P, Prodehl C, Stein A (Ed) Explosion seismology in Central Europe. Springer, Berlin, pp 40–44. doi: 10.1007/978-3-642-66403-8_8 Google Scholar
  7. Frondel C (1945) Secondary Dauphiné twinning in quartz. Am Miner 30:447–460Google Scholar
  8. Grau P, Berg G, Gießmann E-J (1983) Rheologische Untersuchungen fester Stoffe mit Dehnungsratenwechselversuchen. Tech Mech 4:54–58Google Scholar
  9. Haussühl S (1983) Physical properties of crystals—an introduction (2007 edition). Wiley, WeinheimGoogle Scholar
  10. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc 65:349–354. doi: 10.1088/0370-1298/65/5/307 CrossRefGoogle Scholar
  11. Iliescu B, Chirila R (1995) Electric twinning in quartz by temperature gradient. Cryst Res Technol 30:231–235. doi: 10.1002/crat.2170300219 CrossRefGoogle Scholar
  12. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, BerlinCrossRefGoogle Scholar
  13. Kern H (1978) The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics 44:185–203. doi: 10.1016/0040-1951(78)90070-7 CrossRefGoogle Scholar
  14. Kern H (1979) Effect of high-low quartz transition on compressional and shear wave velocities in rocks under high pressure. Phys Chem Miner 4:161–171. doi: 10.1007/BF00307560 CrossRefGoogle Scholar
  15. Kimizuka H, Kaburaki H, Kogure Y (2003) Molecular-dynamics study of the high-temperature elasticity of quartz above the α–β phase transition. Phys Rev B 67:024105 (7pp). doi: 10.1103/PhysRevB.67.024105 CrossRefGoogle Scholar
  16. Klumbach S (2015) Elasticity and viscoelasticity of solid SiO2 as a function of frequency and temperature. Dissertation, Karlsruhe Institute of TechnologyGoogle Scholar
  17. Klumbach S, Schilling FR (2014) Elastic and anelastic properties of α- and α–β quartz single crystals. Eur J Mineral 26:211–220. doi: 10.1127/0935-1221/2014/0026-2362 CrossRefGoogle Scholar
  18. Kuchling H (2004) Taschenbuch der Physik. Fachbuchverlag LeipzigGoogle Scholar
  19. Lakshtanov DL, Sinogeikin SV, Bass JD (2007) High-temperature phase transitions and elasticity of silica polymorphs. Phys Chem Miner 34:11–22. doi: 10.1007/s00269-006-0113-y CrossRefGoogle Scholar
  20. Le Chatelier HL (1889) Sur la dilatation du quartz. C R Ac Sci 108:1046–1049Google Scholar
  21. Li S, Patwardhan AG, Amirouche FM, Havey R, Meade KP (1995) Limitations of the standard linear solid model of invertebral discs subject to prolonged loading and low-frequency vibration in axial compression. J Biomech 28:779–790. doi: 10.1016/0021-9290(94)00140-Y CrossRefGoogle Scholar
  22. Lu C, Jackson I (1998) Seismic-frequency laboratory measurements of shear mode viscoelasticity in crustal rocks II: thermally stressed quartzite and granite. Pure Appl Geophys 153:441–473. doi: 10.1007/978-3-0348-8711-3_10 CrossRefGoogle Scholar
  23. Mason WP (1943) Quartz crystal applications. Bell Syst Tech J 22:178–223. doi: 10.1002/j.1538-7305.1943.tb00860.x CrossRefGoogle Scholar
  24. Mechie J, Sobolev SV, Ratschbacher L, Babeyko AY, Bock F, Jones AG, Nelson KD, Solon KD, Brown LD, Zhao W (2004) Precise temperature estimation in the Tibetan crust from seismic detection of the α–β quartz transition. Geology 32:601–604. doi: 10.1130/G20367.1 CrossRefGoogle Scholar
  25. Menard KP (2008) Dynamic mechanical analysis—a practical introduction. (2nd edition). CRC Press, Boca RatonCrossRefGoogle Scholar
  26. Neumann FE (1885) Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Teubner, LeipzigGoogle Scholar
  27. Nikitin AN, Markova GV, Balagurov AM, Vasin RN, Alekseeva OV (2007) Investigation of the structure and properties of quartz in the α–β transition range by neutron diffraction and mechanical spectroscopy. Crystallogr Rep 52:428–435. doi: 10.1134/S1063774507030145 CrossRefGoogle Scholar
  28. Nye JF (1957) Physical properties of crystals- their representation by tensors and matrices (1992 edition). Clarendon, OxfordGoogle Scholar
  29. Ohno I, Harada K, Yoshitomi C (2006) Temperature variation of elastic constants of quartz across the α–β transition. Phys Chem Miner 33:1–9. doi: 10.1007/s00269-005-0008-3 CrossRefGoogle Scholar
  30. Pabst W, Gregorová E (2013) Elastic properties of silica polymorphs—a review. Ceramics 57:167–184Google Scholar
  31. Peng Z, Redfern SAT (2013) Mechanical properties of quartz at the α–β phase transition: implications for tectonic and seismic anomalies. Geochem Geophys Geosyst 14:18–28. doi: 10.1029/2012GC004482 CrossRefGoogle Scholar
  32. Peng Z, Chien SY, Redfern SAT (2012) Dynamic mechanical relaxation and loss in the incommensurate phase of quartz. J Phys 24:255403. doi: 10.1088/0953-8984/24/25/255403 Google Scholar
  33. Perrier A, de Mandrot R (1923) Elasticité et symétrie du quartz aux temperatures élevées. Mém Soc Vaud Sci Nat 7:333–363. doi: 10.5169/seals-287448 Google Scholar
  34. Raz U, Girsperger S, Thompson AB (2002) Thermal expansion, compressibility and volumetric changes of quartz obtained by single crystal dilatometry to 700 °C and 3.5 kilobars (0.35 GPa). Schweiz Mineral Petrogr Mitt 82:561–574. doi: 10.5169/seals-62381 Google Scholar
  35. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z Angew Math Mech 9:49–58. doi: 10.1002/zamm.19290090104 CrossRefGoogle Scholar
  36. Ronov AB, Yaroshevsky AA (1969) Chemical composition of the Earth’s crust. Geophys Monogr Ser 13:37–57Google Scholar
  37. Savart MF (1829) Sur l’élasticité des corps qui cristallisent régulièrement. Ann Chim Phys 40:5–30Google Scholar
  38. Sheehan AF, de la Torre T, Monslave G, Abers GA, Hacker BR (2014) Physical state of the Himalayan crust and uppermost mantle: constraints from seismic attenuation and velocity tomography. J Geophys Res Solid Earth 119:567–580. doi: 10.1002/2013JB010601 CrossRefGoogle Scholar
  39. Thompson RM, Downs RT, Dera P (2011) The compression pathway of quartz. Am Mineral 96:1495–1502. doi: 10.2138/am.2011.3843 CrossRefGoogle Scholar
  40. Van Tendeloo G, van Landuyt J, Amelinckx S (1976) The α–β phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Phys Status Solidi A 33:723–735. doi: 10.1002/pssa.2210330233 CrossRefGoogle Scholar
  41. Voigt W (1889) Über die Beziehung zwischen den beiden Elastizitätsconstanten isotroper Körper. Ann Phys 274:573–587. doi: 10.1002/andp.18892741206 CrossRefGoogle Scholar
  42. Voigt W (1910) Lehrbuch der Kristallphysik - mit Ausschluss der Kristalloptik. Johnson Reprint Corporation, New York 1966Google Scholar
  43. Wooster WA, Wooster N, Rycroft JL, Thomas LA (1947) The control and elimination of electrical (Dauphiné) twinning in quartz. J Inst. Electr Eng 94:927–938. doi: 10.1049/ji-3a-2.1947.0116 Google Scholar
  44. Zubov VG, Firsova MM (1962) Elastic properties of quartz near the α–β transition. Sov Phys Crystallogr 7:374–376Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Applied Geosciences, Technical PetrophysicsKIT Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI, since 1st June 2016)University of BayreuthBayreuthGermany

Personalised recommendations