Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 7, pp 465–476 | Cite as

Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification

  • I. EfthimiopoulosEmail author
  • S. Jahn
  • A. Kuras
  • U. Schade
  • M. Koch-Müller
Original Paper

Abstract

A combined high-pressure mid-infrared absorption and Raman spectroscopy study on a natural CaMg0.98Fe0.02(CO3)2 dolomite sample was performed both at ambient and high temperatures. A pressure–temperature phase diagram was constructed for all the reported dolomite ambient- and high-pressure polymorphs. In addition, a local distortion of the ambient-pressure dolomite structure was identified close to 11 GPa, just before the transition toward the first known high-pressure phase. All the Clausius–Clapeyron slopes are found to be positive with similar magnitudes. Complementary first-principles calculations suggest a metastable nature of the high-pressure dolomite polymorphs. Finally, theoretical spectroscopy is used to interpret and discuss the observed changes in the measured vibrational spectra.

Keywords

Dolomite Phase diagram High-pressure transitions Vibrational spectroscopy First-principles 

Notes

Acknowledgements

We thank Prof. Wilhelm Heinrich for providing us with the natural dolomite samples, Hans-Peter Nabein for the XRD measurements at ambient conditions, and Dr. Eglof Ritter for his assistance with the SR-MIR experiments. We thank HZB for the allocation of synchrotron radiation beamtime. This study was partly supported by a Grant from Deutsche Forschungsgemeinschaft within the Research Unit FOR2125 under Grant KO1260/16 and JA1469/9.

Supplementary material

269_2017_874_MOESM1_ESM.docx (204 kb)
Supplementary material 1 (DOCX 204 KB)

References

  1. Antao SM, Mulder WH, Hassan I, et al (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite - dolomite reaction boundary. Am Miner 89:1142–1147CrossRefGoogle Scholar
  2. Baroni S, de Gironcoli S, Corso AD, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562CrossRefGoogle Scholar
  3. Besson JM, Itie JP, Polian A et al (1991) High-pressure phase transition and phase diagram of gallium arsenide. Phys Rev B 44:4214CrossRefGoogle Scholar
  4. Biellmann C, Gillet P, Guyot F et al (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41CrossRefGoogle Scholar
  5. Brenker FE, Vollmer C, Vincze L et al (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9CrossRefGoogle Scholar
  6. Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. Am Miner 91:435–440CrossRefGoogle Scholar
  7. Caracas R, Bobocioiu E (2011) The WURM project—a freely available web-based repository of computed physical data for minerals. Am Miner 96:437–443CrossRefGoogle Scholar
  8. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13CrossRefGoogle Scholar
  9. Datchi F, Dewaele A, Loubeyre P, et al (2007) Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell. High Press Res 27:447–463CrossRefGoogle Scholar
  10. Fiquet G, Guyot F, Itie J-P (1994) High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. Am Miner 79:15–23Google Scholar
  11. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18Google Scholar
  12. Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355–10368CrossRefGoogle Scholar
  13. Gonze X, Amadon B, Anglade PM, et al (2009) ABINIT: First-principles approach of materials and nanosystem properties. Comput Phys Comm 180:2582–2615CrossRefGoogle Scholar
  14. Hagiya K, Matsui M, Kimura Y, Akahama Y (2005) The crystal data and stability of calcite III at high pressures based on single-crystal X-ray experiments. J Miner Pet Sci 100:31–36CrossRefGoogle Scholar
  15. Hammouda T, Andrault D, Koga K, et al (2011) Ordering in double carbonates and implications for processes at subduction zones. Contrib Miner Pet 161:439–450CrossRefGoogle Scholar
  16. Hatch DM, Merrill L (1981) Landau description of the calcite-CaCO3(II) phase transition. Phys Rev B 23:368–374CrossRefGoogle Scholar
  17. Heinrich W, Metz P, Bayh W (1986) Experimental investigation of the mechanism of the reaction: 1 tremolite + 11 dolomite = 8 forsterite + 13 calcite + 9 CO2 + 1H2O An SEM study. Contrib Miner Pet 93:215–221CrossRefGoogle Scholar
  18. Hellwege KH, Lesch W, Plihal M, Schaack G (1970) Zwei-Phononen-Absorptionsspektren und Dispersion der Schwingungszweige in Kristallen der Kalkspatstruktur. Z Phys 232:61–86CrossRefGoogle Scholar
  19. Isshiki M, Irifune T, Hirose K et al (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63CrossRefGoogle Scholar
  20. Jahn S, Kowalski PM (2014) Theoretical approaches to structure and spectroscopy of Earth materials. Rev Miner Geochem 78:691–743CrossRefGoogle Scholar
  21. Jing Q, Wu Q, Liu Y, et al (2013) Effect of pressure and temperature on the wavelength shift of the fluorescence line of SrB4O7: Sm2+ scale. High Press Res 33:725–733CrossRefGoogle Scholar
  22. Keppler H, Wiedenbeck M, Shcheka SS (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature 424:414–416CrossRefGoogle Scholar
  23. Klotz S, Chervin J-C, Munsch P, Marchand G Le (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:75413CrossRefGoogle Scholar
  24. Koch-Müller M, Speziale S, Deon F, et al (2011) Stress-induced proton disorder in hydrous ringwoodite. Phys Chem Miner 38:65–73CrossRefGoogle Scholar
  25. Koch-Müller M, Jahn S, Birkholz N, et al (2016) Phase transitions in the system CaCO3 at high P and T determined by in situ vibrational spectroscopy in diamond anvil cells and first-principles simulations. Phys Chem Miner 43:1–17CrossRefGoogle Scholar
  26. Kraft S, Knittle E, Williams Q (1991) Carbonate stability in the Earth’s mantle: a vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. J Geophys Res 96:17997–18009CrossRefGoogle Scholar
  27. Liu L, Lin C-C (1995) High-pressure phase transformations of carbonates in the system CaO-MgO-SiO2-CO2. Earth Planet Sci Lett 134:297–305CrossRefGoogle Scholar
  28. Luth RW (2001) Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa. Contrib Miner Pet 141:222–232CrossRefGoogle Scholar
  29. Mao HK, Xu J, Bell P (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673CrossRefGoogle Scholar
  30. Mao Z, Armentrout M, Rainey E et al (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett 38:L22303Google Scholar
  31. Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite. Am Miner 81:611–624CrossRefGoogle Scholar
  32. Merlini M, Crichton WA, Hanfland M, et al (2012a) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci 109:13509–13514CrossRefGoogle Scholar
  33. Merlini M, Hanfland M, Crichton WA (2012b) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett 333–334:265–271CrossRefGoogle Scholar
  34. Merrill L, Bassett WA (1975) The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate. Acta Cryst B 31:343–349CrossRefGoogle Scholar
  35. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  36. Morlidge M, Pawley A, Droop G (2006) Double carbonate breakdown reactions at high pressure: an experimental study in the system CaO-MgO-FeO-MnO-CO2. Contrib Miner Pet 152:365–373CrossRefGoogle Scholar
  37. Mrosko M, Koch-Müller M, Schade U (2011) In-situ mid/far micro-FTIR spectroscopy to trace pressure-induced phase transitions in strontium feldspar and wadsleyite. Am Miner 96:1748–1759CrossRefGoogle Scholar
  38. Oganov AR, Ono S, Ma YM et al (2008) Novel high-pressure structures of MgCO3, CaCO3, and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47CrossRefGoogle Scholar
  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  40. Pippinger T, Miletich R, Merlini M, et al (2015) Puzzling calcite-III dimorphism: crystallography, high-pressure behavior, and pathway of single-crystal transitions. Phys Chem Miner 42:29–43CrossRefGoogle Scholar
  41. Poswal HK, Garg N, Somayazulu M, Sharma SM (2013) Pressure-induced structural transformations in the low-cristobalite form of AlPO4. Am Miner 98:285–291CrossRefGoogle Scholar
  42. Raju SV, Zaug JM, Chen B et al (2011) Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature. J Appl Phys 110:23521–23528CrossRefGoogle Scholar
  43. Reeder RJ, Dollase WA (1989) Structural variation in the dolomite-ankerite solid-solution series: an X-ray, Mössbauer, and TEM study. Am Miner 74:1159–1167Google Scholar
  44. Reeder RJ, Wenk H-R (1983) Structure refinements of some thermally disordered dolomite. Am Miner 68:769–776Google Scholar
  45. Ross NL, Reeder RJ (1992) High-pressure structural study of dolomite and ankerite. Am Miner 77:412–421Google Scholar
  46. Santillan J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Inter 143–144:291–304CrossRefGoogle Scholar
  47. Santillan J, Williams Q, Knittle E (2003) Dolomite-II: a high-pressure polymorph of CaMg(CO3)2. Geophys Res Lett 30:1054CrossRefGoogle Scholar
  48. Sato K, Katsura T (2001) Experimental investigation on dolomite dissociation into aragonite + magnesite up to 8.5 GPa. Earth Planet Sci Lett 184:529–534CrossRefGoogle Scholar
  49. Shirasaka M, Takahashi E, Nishihara Y, et al (2002) In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. Am Miner 87:922–930CrossRefGoogle Scholar
  50. Steinfink H, Sans FT (1959) Refinement of the crystal structure of dolomite. Am Miner 44:679–682Google Scholar
  51. Takemura K (2001) Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. J Appl Phys 89:662–668CrossRefGoogle Scholar
  52. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  53. Valenzano L, Noel Y, Orlando R et al (2007) Ab initio vibrational spectra and dielectric properties of carbonates: magnesite, calcite and dolomite. Theor Chem Acc 117:991–1000CrossRefGoogle Scholar
  54. Veithen M, Gonze X, Ghosez P (2005) Nonlinear optical susceptibilities, Raman efficiencies, and electrooptic tensors from firstprinciples density functional perturbation theory. Phys Rev B 71:125107CrossRefGoogle Scholar
  55. White WB (1974) The Infrared Spectra of Minerals. In: Farmer VC (ed). Mineralogical Society Monograph, London, p 227–279Google Scholar
  56. Wittlinger J, Fischer R, Werner S et al (1997) High-pressure study of hcp-argon. Acta Cryst B 53:745–749CrossRefGoogle Scholar
  57. Zucchini A, Comodi P, Nazzareni S, Hanfland M (2014) The effect of cation ordering and temperature on the high-pressure behaviour of dolomite. Phys Chem Miner 41:783–793CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • I. Efthimiopoulos
    • 1
    Email author
  • S. Jahn
    • 2
  • A. Kuras
    • 1
  • U. Schade
    • 3
  • M. Koch-Müller
    • 1
  1. 1.Deutsches GeoForschungsZentrum GFZ, Section 4.3PotsdamGermany
  2. 2.Institut für Geologie und MineralogieUniversität zu KölnCologneGermany
  3. 3.Helmholtz-Zentrum Berlin, EM-IMMBerlinGermany

Personalised recommendations