Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 6, pp 445–453 | Cite as

Melting relations in the MgO–MgSiO3 system up to 70 GPa

  • Satoka OhnishiEmail author
  • Yasuhiro Kuwayama
  • Toru Inoue
Original Paper

Abstract

Melting experiments in a binary system MgO–MgSiO3 were performed up to 70 GPa using a CO2 laser heated diamond anvil cell. The quenched samples were polished and analyzed by a dualbeam focused ion beam (FIB) and a field emission scanning electron microscope (FE-SEM), respectively. The liquidus phase and the eutectic composition were determined on the basis of textual and chemical analyses of sample cross sections. Our experimental results show that the eutectic composition is the Si/Mg molar ratio of ~0.76 at 35 GPa and it decreases with increasing pressure. Above 45 GPa, it becomes relatively constant at about 0.64–0.65 Si/Mg molar ratio. Using our experimental data collected at a wide pressure range up to 70 GPa together with previous experimental data, we have constructed a thermodynamic model of the eutectic composition of the MgO–MgSiO3 system. The eutectic composition extrapolated to the pressure and temperature conditions at the base of the mantle is about 0.64 Si/Mg molar ratio. The modeled eutectic composition is quite consistent with a previous prediction from ab initio calculations (de Koker et al. in Earth Planet Sci Lett 361:58–63, 2013), suggesting that the simple assumption of a non-ideal regular solution model can well describe the melting relation of the MgO–MgSiO3 system at high pressure. Our results show that the liquidus phase changes from MgO-periclase to MgSiO3-bridgmanite at 35 GPa for the simplified pyrolite composition (~0.7 Si/Mg molar ratio), while MgSiO3-bridgmanite is the liquidus phase at the entire lower mantle conditions for the chondritic composition (~0.84 Si/Mg molar ratio).

Keywords

Lower mantle Melting Eutectic composition Bridgmanite High pressure Diamond anvil cell 

Notes

Acknowledgements

We thank T. Kimura, A. Shinozaki, S. Machida, and H. Hirai for help with the development of the CO2 laser heating system. A. Masuno and K. Ohara are acknowledged for preparation of glasses as the starting materials. We also thank H. Dekura and T. Taniuch for calculations, S. Tateno, Y. Nakajima and R. Nomura for discussions. This study was supported in part by the Grants-in-Aid of the Scientific Research (Nos. 26247073 and 15H05828 to T. Inoue) of the Japan Society for the Promotion of Science.

References

  1. Akahama Y, Kawamura H (2004) High-pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J Appl Phys 96:3748–3751. doi: 10.1063/1.1778482 CrossRefGoogle Scholar
  2. Alfe D (2005) Melting curve of MgO from first-principles simulations. Phys Rev Lett 94:235701. doi: 10.1103/PhysRevLett.94.235701 CrossRefGoogle Scholar
  3. Andrault D, Pesce G, Bouhifd MA, Bolfan-Casanova D, Hénot JM, Mezouar M (2014) Melting of subducted basalt at core-mantle boundary. Science 344:892–985. doi: 10.1126/science.1250466 CrossRefGoogle Scholar
  4. Belonoshko AB, Dubrovinsky LS (1996) Molecular dynamics of NaCl (B1 and B2) and MgO (B1) melting: two-phase simulation. Am Mineral 81:303–316. doi: 10.2138/am-1996-3-404 CrossRefGoogle Scholar
  5. Boukaré CE, Ricard Y, Fiquet G (2015) Thermodynamics of the MgO–FeO–SiO2 system up to 140 GPa: application to crystallization of Earth’s magma ocean. J Geophys Res 120:6085–6101. doi: 10.1002/2015JB011929 CrossRefGoogle Scholar
  6. Canup RM (2004) Simulation of a late lunar-forming impact. Icarus 168:433–456. doi: 10.1016/j.icarus.2003.09.028 CrossRefGoogle Scholar
  7. Chen CH, Presnall DC (1975) The system Mg2 SiO4–SiO2 at pressures up to 25 kilobars. Am Mineral 60:398–406Google Scholar
  8. Cohen RE, Gong Z (1994) Melting and melt structure of MgO at high pressures. Phys Rev B 50:12301. doi: 10.1103/PhysRevB.50.12301 CrossRefGoogle Scholar
  9. de Koker N, Stixrude L (2009) Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO3 perovskite. Geophys J Int 178:162–179. doi: 10.1111/j.1365-246X.2009.04142.x CrossRefGoogle Scholar
  10. de Koker NP, Stixrude L, Karki BB (2009) Thermodynamics, structure, dynamics, and freezing of Mg2 SiO4 liquid at high pressure. Geochim Cosmochim Acta 72:1427–1441. doi: 10.1016/j.gca.2007.12.019 CrossRefGoogle Scholar
  11. de Koker N, Karki BB, Stixrude LN (2013) Thermodynamics of the MgO–SiO2 liquid system in Earth’s lowermost mantle from first principles. Earth Planet Sci Lett 361:58–63. doi: 10.1061/j.epsl.2012.11.026 CrossRefGoogle Scholar
  12. Du Z, Lee KKM (2014) High-pressure melting of MgO from (Mg,Fe)O solid solutions. Geophys Res Lett 41:1–6. doi: 10.1002/2014GL061954 CrossRefGoogle Scholar
  13. Fiquet G, Auzende AL, Siebert J, Corgne A, Bureau H, Ozawa H, Garbarino G (2010) Melting of peridotite to 140 gigapascals. Science 329:1516–1518. doi: 10.1126/science.1192448 CrossRefGoogle Scholar
  14. Garnero EJ, Helmberger DV (1998) Further structural constraints and uncertainties of a thin laterally ultralow-velocity layer at the base of the mantle. J Geophys Res 103:12495–12509. doi: 10.1029/98JB00700 CrossRefGoogle Scholar
  15. Inoue T (1994) Effect of water on melting phase relations and melt composition in the system Mg2 SiO4–MgSiO3–H2O up to 15 GPa. Phys Earth Planet Inter 85:237–263. doi: 10.1016/0031-9201(94)90116-3 CrossRefGoogle Scholar
  16. Ito E, Kubo A, Katsura T, Walter MJ (2004) Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys Earth Planet Inter 143–144:397–406. doi: 10.1016/j.pepi.2003.09.016 CrossRefGoogle Scholar
  17. Kato T, Kumazawa M (1985) Effect of high pressure on the melting relation in the system Mg2 SiO4–MgSiO3 part I. Eutectic relation up to 7 GPa. J Phys Earth 33:513–524. doi: 10.4294/jpe1952.33.513 CrossRefGoogle Scholar
  18. Kato T, Kumazawa M (1986) Melting and phase relation in the system Mg2 SiO4–MgSiO3 at 20 GPa under hydrous conditions. J Geophys Res 91:9351–9355. doi: 10.1029/JB091iB09p09351 CrossRefGoogle Scholar
  19. Kimura T, Kuwayama Y, Yagi T (2014) Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique. J Chem Phys 140:074501. doi: 10.1063/1.4865252 CrossRefGoogle Scholar
  20. Kohara S, Akola J, Morita H, Suzuya K, Weber JKR, Wilding MC, Benmore CJ (2011) Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses. Proc Natl Acad Sci 14780–14785. doi: 10.1073/pnas.1104692108
  21. Labrosse S, Hernlund JW, Hirose K (2015) Fractional melting and freezing in the deep mantle and implications for the formation of a basal magma ocean. In: Badro J, Walter M (eds) The early Earth: accretion and differentiation, AGU monograph 212. Wiley, New York, pp 123–142CrossRefGoogle Scholar
  22. Lay T, Garnero EJ, Williams Q (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys Earth Planet Inter 146:441–467. doi: 10.1016/j.pepi.2004.04.004 CrossRefGoogle Scholar
  23. Liebske C, Frost DJ (2012) Melting phase relations in the MgO–MgSiO3 system between 16 and 26 GPa: implications for melting in Earth’s deep interior. Earth Planet Sci Lett 345–348:159–170. doi: 10.1016/j.epsl.2012.06.038 CrossRefGoogle Scholar
  24. Litasov K, Ohtani E (2002) Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127. doi: 10.1016/S0031-9201(02)00152-8 CrossRefGoogle Scholar
  25. Litasov KD, Ohtani E (2005) Phase relation in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter. 150:239–263. doi: 10.1016/j.pepi.2004.10.010 CrossRefGoogle Scholar
  26. Mosenfelder JL, Asimow PD, Frost DJ, Ruibe DC, Ahrens TJ (2009) The MgSiO3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. J Geophys Res 1(1):4. doi: 10.1029/2008JB005900 Google Scholar
  27. Nomura R, Ozawa H, Tateno S, Hirose K, Hernlund J, Muto S, Ishii H, Hiraoka N (2011) Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473:199–202. doi: 10.1038/nature09940 CrossRefGoogle Scholar
  28. Nomura R, Hirose K, Uesugi K, Ohishi Y, Tsuchiyama A, Miyake A, Ueno Y (2014) Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343:522–525. doi: 10.1126/science.1248186 CrossRefGoogle Scholar
  29. Ohtani E (1979) Melting relation of Fe2 SiO4 up to about 200 kbar. J Phys Earth 27:189–208. doi: 10.4294/jpe1052.27.189 CrossRefGoogle Scholar
  30. Ohtani E (1987) Ultrahigh-pressure melting of a model chondritic mantle and pyrolite compositions. In: Manghnai MH, Syono Y (eds) High-pressure research in mineral physics: a volume in honor of Syun-iti Akimoto. AGU, Washington D.C. doi: 10.1029/GM039p0087 Google Scholar
  31. Pradhan GK, Fiquet G, Siebert J, Auzende AL, Morard G, Antonangeli D, Garbarino G (2015) Melting of MORB at core–mantle boundary. Earth Planet Sci Lett 431:247–251. doi: 10.1016/j.epsl.2015.09.034 CrossRefGoogle Scholar
  32. Presnall DC, Gasparik T (1990) Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2 SiO4)–majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J Geophys Res 95:15771–15777. doi: 10.1029/JB095iB10p15771 CrossRefGoogle Scholar
  33. Shen G, Lazor P (1995) Measurement of melting temperatures of some minerals under lower mantle pressures. J Geophys Res 100:17699–17713. doi: 10.1029/95JB01864 CrossRefGoogle Scholar
  34. Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals—II. Phase equilibria. Geophys J Int 184:1180–1213. doi: 10.1111/j.1365-246X.2010.04780.x CrossRefGoogle Scholar
  35. Takahashi E (1986) Melting of a dry periodite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle. J Geophy Res 91:9367–9382. doi: 10.1029/JB091iB09p09367 CrossRefGoogle Scholar
  36. Tateno S, Hirose K, Ohishi Y (2014) Melting experiments on peridotite to lowermost mantle conditions. J Geophys Res 119:4684–4694. doi: 10.1002/2013JB010616 CrossRefGoogle Scholar
  37. Taylor HCJ (1973) Melting relations in the system MgO–Al2O3–SiO2 at 15 kb. Geol Soc Am Mem 84:1335–1348. doi: 10.1130/0016-7606(1973)84<1335:MRITSM>2.0.CO;2 CrossRefGoogle Scholar
  38. Thomas CW, Liu Q, Agee CB, Asimow PD, Lange RA (2012) Multi-technique equation of state for Fe2 SiO4 melt and the density of Fe-bearing silicate melts from 0 to 161 GPa. J Geophys Res Solid Earth 117:B10206. doi: 10.1029/2012JB009403 CrossRefGoogle Scholar
  39. Wen L, Helmberge DV (1998) Ultra-low velocity zones near the core–mantle boundary from broadband PKP precursors. Science 279:1701–1703. doi: 10.1126/science.279.5357.1701 CrossRefGoogle Scholar
  40. Williams Q, Garnero EJ (1996) Seismic evidence for partial melt at the base of Earth’s mantle. Science 273:1528–1530. doi: 10.1126/science.273.5281.1528 CrossRefGoogle Scholar
  41. Wood BJ, Rubie DC (1996) The effect of alumina on phase transformations at the 660-kilometer discontinuity from Fe–Mg partitioning experiments. Science 273:1522–1524. doi: 10.1126/science.273.5281.1522 CrossRefGoogle Scholar
  42. Zhang L, Fei Y (2008) Melting behavior of (Mg,Fe)O solid solutions at high pressure. Geophys Res Lett 35:L13302. doi: 10.1029/2008GL034585 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Satoka Ohnishi
    • 1
    Email author
  • Yasuhiro Kuwayama
    • 1
    • 2
  • Toru Inoue
    • 1
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Department of Earth and Planetary ScienceTokyo UniversityTokyoJapan

Personalised recommendations