Physics and Chemistry of Minerals

, Volume 44, Issue 6, pp 389–401 | Cite as

Electron-beam-induced annealing of natural zircon: a Raman spectroscopic study

  • Tamás VácziEmail author
  • Lutz Nasdala
Original Paper


The annealing of radiation damage in zircon by low-energy electron irradiation was explored systematically. Natural zircon samples spanning a wide range of self-irradiation damage were irradiated with the focused electron beam of an electron probe microanalyser. The effects of beam current and irradiation time were tested systematically, and the changes in zircon were measured using Raman spectroscopy. Our results confirm the damage-annealing effect of an accelerated electron beam. We demonstrate that non-thermal annealing occurs through electron-enhanced defect reactions and that the extent of the annealing is a function of both the irradiation time and the beam current. The complete annealing of radiation damage in zircon by an accelerated electron beam was not possible under the conditions of our experiments. Our results indicate that Raman band broadening in ion-irradiated zircon can possibly be explained through phonon confinement, as the estimated domain sizes of the crystalline volume amid recoil clusters decrease with increasing α dose. The results underlay the importance of doing Raman spectroscopy before electron-beam and ion-beam analysis. To avoid unwanted beam-induced annealing of damage in zircon during EPMA analysis, the electron energy transferred per volume unit of sample should be minimised, for instance by keeping the integrated charge low and/or by defocusing the electron beam.


Zircon Raman spectroscopy Band broadening Radiation damage Electron-beam annealing 



Gem zircon samples were kindly made available by Wolfgang Hofmeister (Mainz) and Allen K. Kennedy (Perth), and the synthetic zircon crystal was provided by John M. Hanchar (St. John’s). Andreas Möller (Lawrence, KS) is thanked for the permission to use the Rogaland sample mounts in the present study. Sample preparation was done by Andreas Wagner (Vienna). We gratefully acknowledge the experimental assistance by Nora Groschopf (Mainz), Theodoros Ntaflos (Vienna), Ferenc Kristály and Norbert Zajzon (Miskolc), Reinhard Kaindl (Innsbruck), Gábor Varga, Zsolt Bendő and Péter Horváth (Budapest). Richard A. Ketcham is thanked for comments. We are indebted E. Schweizerbart Science Publishers for the permission to reproduce Fig. 6b. T.V. expresses his thanks for access to the research infrastructure in the Core Facility for Research and Instruments, Faculty of Science, Eötvös University (Budapest). This project has been supported by the National Research, Development and Innovation Office of Hungary Grant No. OTKA PD116183 to T.V., and by the Austrian Science Fund (FWF) Grant No. P24448–N19 to L.N.


  1. Babsail L, Hamelin N, Townsend PD (1991) Helium-ion implanted waveguides in zircon. Nucl Instrum Methods Phys Rec B 59:1219–1222. doi: 10.1016/0168-583X(91)95797-H CrossRefGoogle Scholar
  2. Bae IT, Zhang YW, Weber WJ, Higuchi M, Giannuzzi LA (2007) Electron-beam induced recrystallization in amorphous apatite. Appl Phys Lett 90:021912. doi: 10.1063/1.2430779 CrossRefGoogle Scholar
  3. Balkanski M (1986) Dynamics of localized phonon modes. In: Butcher PN, March NH, Tosi MP (eds) Crystalline semiconducting materials and devices. Springer, Boston, pp 195–216CrossRefGoogle Scholar
  4. Bursill LA, McLaren AC (1966) Transmission electron microscope study of natural radiation damage in zircon (ZrSiO4). Phys Status Solidi B 13:331–343. doi: 10.1002/pssb.19660130205 CrossRefGoogle Scholar
  5. Capitani GC, Leroux H, Doukhan JC, Ríos S, Zhang M, Salje EKH (2000) A TEM investigation of natural metamict zircons: structure and recovery of amorphous domains. Phys Chem Miner 27:545–556. doi: 10.1007/s002690000100 CrossRefGoogle Scholar
  6. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics & phase relations: a handbook of physical constants, vol 3. American Geophysical Union, Washington, DC, pp 105–126CrossRefGoogle Scholar
  7. Demers H, Poirier-Demers N, Couture AR, Joly D, Guilmain M, de Jonge N, Drouin D (2011) Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 33:135–146. doi: 10.1002/sca.20262 CrossRefGoogle Scholar
  8. Devanathan R, Corrales LR, Weber WJ, Chartier A, Meis C (2006) Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol Simul 32:1069–1077. doi: 10.1080/08927020600959929 CrossRefGoogle Scholar
  9. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409. doi: 10.1016/j.micron.2004.02.003 CrossRefGoogle Scholar
  10. Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon/Rev Mineral Geochem 53. Mineralogical Society of America, Washington, DC, pp 387–425Google Scholar
  11. Farnan I, Salje EKH (2001) The degree and nature of radiation damage in zircon observed by 29Si nuclear magnetic resonance. J Appl Phys 89:2084–2090. doi: 10.1063/1.1343523 CrossRefGoogle Scholar
  12. Fritzsche CR, Rothemund W (1978) Investigation of radiation damage by electron beam absorption measurements. Appl Phys 16:339–343. doi: 10.1007/BF00885857 CrossRefGoogle Scholar
  13. Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Miner 29:420–429. doi: 10.1007/s00269-002-0249-3 CrossRefGoogle Scholar
  14. Geisler T, Pidgeon RT (2002) Raman scattering from metamict zircon: comments on “Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage” by Nasdala et al. 2001 (Contribution to Mineralogy and Petrology 141: 125–144). Contrib Mineral Petrol 143:750–757. doi: 10.1007/s00410-002-0378-1 CrossRefGoogle Scholar
  15. Geisler T, Pidgeon RT, Van Bronswijk W, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13:1163–1176. doi: 10.1127/0935-1221/2001/0013-1163 CrossRefGoogle Scholar
  16. Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680CrossRefGoogle Scholar
  17. Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300. doi: 10.1107/S0365110X55000947 CrossRefGoogle Scholar
  18. Jercinovic MJ, Williams ML (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. Am Mineral 90:526–546. doi: 10.2138/am.2005.1422 CrossRefGoogle Scholar
  19. Jiang N, Spence JCH (2009) Radiation damage in zircon by high-energy electron beams. J Appl Phys 105:123517. doi: 10.1063/1.3151704 CrossRefGoogle Scholar
  20. Ketcham RA, Guenthner WR, Reiners PW (2013) Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. Am Mineral 98:350–360. doi: 10.2138/am.2013.4249 CrossRefGoogle Scholar
  21. Lian J, Ríos S, Boatner LA, Wang LM, Ewing RC (2003) Microstructural evolution and nanocrystal formation in Pb+-implanted ZrSiO4 single crystals. J Appl Phys 94:5695–5703. doi: 10.1063/1.1618917 CrossRefGoogle Scholar
  22. Liu M, Xu LY, Lin XZ (1994) Heating effect of electron beam bombardment. Scanning 16:1–5. doi: 10.1002/sca.4950160102 CrossRefGoogle Scholar
  23. Meldrum A, Boatner LA, Ewing RC (1997) Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J Mater Res 12:1816–1827. doi: 10.1557/JMR.1997.0250 CrossRefGoogle Scholar
  24. Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc London Spec Publ 220:65–81. doi: 10.1144/gsl.sp.2003.220.01.04 CrossRefGoogle Scholar
  25. Moreira PAFP, Devanathan R, Yu JG, Weber WJ (2009) Molecular-dynamics simulation of threshold displacement energies in zircon. Nucl Instrum Methods Phys Rec B 267:3431–3436. doi: 10.1016/j.nimb.2009.07.023 CrossRefGoogle Scholar
  26. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532Google Scholar
  27. Nasdala L (2009) Pb+ irradiation of synthetic zircon (ZrSiO4): infrared spectroscopic investigation—discussion. Am Mineral 94:853–855. doi: 10.2138/am.2009.541 CrossRefGoogle Scholar
  28. Nasdala L, Hanchar JM (2005) Comment on: application of Raman spectroscopy to distinguish metamorphic and igneous zircon (Xian et al., Anal. Lett. 2004, v. 37, p. 119). Anal Lett 38:727–734. doi: 10.1081/AL-200050353 CrossRefGoogle Scholar
  29. Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478CrossRefGoogle Scholar
  30. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144. doi: 10.1007/s004100000235 CrossRefGoogle Scholar
  31. Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140. doi: 10.1016/S0009-2541(02)00152-3 CrossRefGoogle Scholar
  32. Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon/Rev Mineral Geochem 53. Mineralogical Society of America, Washington, DC, pp 427–467Google Scholar
  33. Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231. doi: 10.2138/am-2004-0126 CrossRefGoogle Scholar
  34. Nasdala L, Hanchar JM, Kronz A, Whitehouse MJ (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103. doi: 10.1016/j.chemgeo.2005.03.012 CrossRefGoogle Scholar
  35. Nasdala L, Kronz A, Hanchar JM, Tichomirowa M, Davis DW, Hofmeister W (2006) Effects of natural radiation damage on back-scattered electron images of single crystals of minerals. Am Mineral 91:1739–1746. doi: 10.2138/am.2006.2241 CrossRefGoogle Scholar
  36. Nasdala L, Kronz A, Grambole D, Trullenque G (2007) Effects of irradiation damage on the back-scattering of electrons: silicon-implanted silicon. Am Mineral 92:1768–1771. doi: 10.2138/am.2007.2648 CrossRefGoogle Scholar
  37. Nasdala L, Miletich R, Ruschel K, Váczi T (2008) Raman study of radiation-damaged zircon under hydrostatic compression. Phys Chem Mineral 35:597–602. doi: 10.1007/s00269-008-0251-5 CrossRefGoogle Scholar
  38. Nasdala L, Grambole D, Götze J, Kempe U, Váczi T (2011) Helium irradiation study on zircon. Contrib Mineral Petrol 161:777–789. doi: 10.1007/s00410-010-0562-7 CrossRefGoogle Scholar
  39. Osswald S, Mochalin VN, Havel M, Yushin G, Gogotsi Y (2009) Phonon confinement effects in the Raman spectrum of nanodiamond. Phys Rev B 80:075419. doi: 10.1103/PhysRevB.80.075419 CrossRefGoogle Scholar
  40. Palenik CS, Nasdala L, Ewing RC (2003) Radiation damage in zircon. Am Mineral 88:770–781. doi: 10.2138/am-2003-5-606 CrossRefGoogle Scholar
  41. Reed SJB (2005) Electron microprobe analysis and scanning electron microscopy in geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Reimer L (1998) Scanning electron microscopy. Springer, BerlinCrossRefGoogle Scholar
  43. Ríos S, Salje EKH, Zhang M, Ewing RC (2000) Amorphization in zircon: evidence for direct impact damage. J Phys: Condens Matter 12:2401–2412. doi: 10.1088/0953-8984/12/11/306 Google Scholar
  44. Sundius T (1973) Computer fitting of Voigt profiles to Raman lines. J Raman Spectrosc 1:471–488. doi: 10.1002/jrs.1250010506 CrossRefGoogle Scholar
  45. Utsunomiya S, Yudintsev S, Wang LM, Ewing RC (2003) Ion-beam and electron-beam irradiation of synthetic britholite. J Nucl Mater 322:180–188. doi: 10.1016/S0022-3115(03)00327-1 CrossRefGoogle Scholar
  46. Váczi T (2014) A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles. Appl Spectrosc 68:1274–1278. doi: 10.1366/13-07275 CrossRefGoogle Scholar
  47. Váczi T, Nasdala L, Wirth R, Mehofer M, Libowitzky E, Häger T (2009) On the breakdown of zircon upon “dry” thermal annealing. Mineral Petrol 97:129–138. doi: 10.1007/s00710-009-0087-9 CrossRefGoogle Scholar
  48. Wang LM, Ewing RC (1992) Detailed in situ study of ion beam-induced amorphization of zircon. Nucl Instrum Methods Phys Rec B 65:324–329. doi: 10.1016/0168-583X(92)95060-5 CrossRefGoogle Scholar
  49. Weber WJ (1991) Self-radiation damage and recovery in Pu-doped zircon. Radiat Effects Defect Solids 115:341–349. doi: 10.1080/10420159108220580 CrossRefGoogle Scholar
  50. Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698. doi: 10.1557/JMR.1994.0688 CrossRefGoogle Scholar
  51. Weeks JD, Tully JC, Kimerling LC (1975) Theory of recombination-enhanced defect reactions in semiconductors. Phys Rev B 12:3286–3292. doi: 10.1103/PhysRevB.12.3286 CrossRefGoogle Scholar
  52. Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schluter J, Ewing RC (2000a) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys: Condens Matter 12:3131–3148. doi: 10.1088/0953-8984/12/13/321 Google Scholar
  53. Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000b) Metamictization of zircon: raman spectroscopic study. J Phys: Condens Matter 12:1915–1925. doi: 10.1088/0953-8984/12/8/333 Google Scholar
  54. Zhang Y, Lian J, Wang CM, Jiang W, Ewing RC, Weber WJ (2005) Ion-induced damage accumulation and electron-beam-enhanced recrystallization in SrTiO3. Phys Rev B 72:094112. doi: 10.1103/PhysRevB.72.094112 CrossRefGoogle Scholar
  55. Zhao GP, Treacy MMJ, Buseck PR (2010) Fluctuation electron microscopy of medium-range order in ion-irradiated zircon. Philos Mag 90:4661–4677. doi: 10.1080/14786431003630876 CrossRefGoogle Scholar
  56. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Rec B 268:1818–1823. doi: 10.1016/j.nimb.2010.02.091 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MineralogyEötvös Loránd UniversityBudapestHungary
  2. 2.Institut für Mineralogie und KristallographieUniversität WienViennaAustria

Personalised recommendations